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MODELLING DISPERSION EFFECTS IN PAPER —
EFFECTIVE THICKNESS ESTIMATES

The structural properties of paper and cardboard are important for
the design of containers and of packaging. Amcor, a Melbourne-
based producer of packaging, pulp and paper products, proposed
the initial problem of explaining the large discrepancies which were
sometimes observed between the nominal thickness, as determined by
hard platen measurements, and the effective thickness which would
account for the experimentally measured values of bending stiffness.
The question was also raised as to whether or not ultrasonic waves
could be used to measure directly, and on-line, the effective thickness.

Paper can be regarded as a fibre-composite material, with a pro-
nounced anisotropy due to the preferential alignment of fibres in the
machine direction as a consequence of the manufacturing process.
The salient features of elastic (ultrasonic) wave propagation in an
anisotropic plate will be presented, with an emphasis on addressing
the questions raised above. In particular, it will be noted that the
characterization of the first anti-symmetric (flexural) mode should
provide a convenient on-line measurement of the flexural stiffness,
which is the more relevant property for quality control and struc-
tural design than the effective thickness.

1. Introduction

Amcor is a Melbourne-based producer of pulp and paper products. With an
annual operating revenue of about $3 billion, it is one of the largest such com-
panies in the world. Paperboard, heavy paper, carton stock etc. are widely used
as packaging materials and for containers. Of the various mechanical properties
of such paper products, the two which are perhaps the most important for pre-
dicting their end-use behaviour are the compression strength and the bending
stiffness (or flexural rigidity).

Stiffness can be measured non-destructively, whereas a proper measurement
of strength is necessarily destructive. Consequently, there is considerable interest
in establishing correlations between strength and stiffness, albeit for particular
classes of paper products and within limited ranges of manufacturing-process
parameters, and to use measurements of stiffness for quality control. This ap-
proach is particularly attractive if the stiffness measurements can be performed
on-line.
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A measurement of this type has been proposed relatively recently by re-
searchers at the Institute of Paper Chemistry in the USA (Baum and Habeger,
1980). What is actually measured on-line is the speed of ultrasound in the ma-
chine direction (md), or in the cross direction (cd), at a relatively low (sonic)
frequency, typically around 150 Hz. More precisely, the speed of the lowest sym-
metric plate-wave mode, S, is measured. The square of this wavespeed is equal
to the Young’s modulus E (md or cd, respectively) divided by the density p,
according to a well-known relation attributed to Newton:

¢*(S,) = E/p. (1)

The density of paper products is traditionally specified in terms of the basis
weight W, rather than the density, the relation between these two being simply

W = pt, (2)

where t denotes the thickness. Thus, from the on-line measurement of the
wavespeed ¢(S,), and knowledge of the basis weight W, which is a controllable
process parameter, one can derive an on-line measurement of the extensional
stiffness S,

S. = Et = Wc*(S,). (3)

This sonic extensional stiffness has been shown to correlate well with destruc-
tively measured strength properties (Vahey, 1987).

However, from the viewpoint of predicting the end-use performance of paper-
based containers, the bending stiffness S; is the more structurally significant
parameter, rather than the extensional stiffness. The conventional expression
for Sy, which applies for cylindrical bending of an isotropic plate (Timoshenko
and Woinowsky-Krieger, 1959), is

S, = Et*/12. (4)

Assuming that this relation can also be applied to paper products, one can define
an effective thickness t.g as follows

tg = (12854/5.)%, (5)

where S} is interpreted as a direct measurement of the bending stiffness, de-
termined for example from the deflection of an end-loaded cantilever, as in the
Taber test (Koran and Kamdem, 1989). Thus S, represents an independent
measurement of stiffness from S, and t.5 can be interpreted as the value of
thickness which must be used to predict correctly the measured bending stiff-
ness Sy, starting from a measurement of the extensional stiffness §..
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The problem submitted to the MISG by Amcor can now be stated as follows.
Measurements undertaken by Amcor on various paper products showed in some
cases asignificant discrepancy between the effective thickness ¢,z and the nominal
thickness t,,m,, which is measured with hard platens. Since t.5 is the more
significant parameter for assessing structural performance, as discussed above,
this discrepancy has serious implications for on-line quality control. It was hoped
that a mathematical model for the propagation of elastic waves in plate-like
paper products may provide a method for determining, or estimating, t.. In
particular, Amcor had noted a recent theoretical analysis by Habeger, Mann
and Baum (1979), which showed a relatively sharp drop in the wavespeed as a
function of frequency, and which associated this drop with the onset of significant
deformation normal to the md/cd plane, i.e. with the onset of significant elastic
displacement in the z-direction (2d), using the conventional choice of rectangular
cartesian axes whereby the z-axis points in the machine direction (md), and the
y-axis in the cross-direction (cd). It was hoped that a careful scrutiny of this
analysis might indicate how the frequency at which the sharp drop occurs could
be used to determine t.g.

The main activity during the one-week MISG workshop was accordingly
focussed on understanding the analysis of Habeger et al. (1979) for plate-waves
in paper. The major contribution of the workshop, however, was to point out
that a measure of the bending stiffness S, can be obtained directly from on-line
measurements of the wavespeed of the lowest anti-symmetric (or flexural) plate-
wave mode A,, rather than from similar measurements for the lowest symmetric
(or extensional) mode S, which has been used for on-line measurement of the
extensional stiffness, as noted above. Thus, it is not necessary to determine an
effective thickness, nor is it necessary to determine the frequency corresponding
to the drop in wavespeed for the S, mode: the structurally significant parameter
Sp is best determined from another mode of plate vibration altogether, viz. A,.

Although this statement seems eminently plausible, it does not appear to
have been recognized or exploited in the industrial context of paper-making.
Attention appears to have been focussed on the S, mode, perhaps because the
corresponding wavespeed is relatively independent of frequency for sufficiently
low frequencies (lower than the frequency noted above at which a sharp drop
occurs to another plateau value for wavespeed, characteristic of high frequen-
cies). Thus, the low-frequency components of a wave packet in the $, mode
are non-dispersive, so that a wave packet constituted mainly from these low
frequencies would propagate without distortion (or with negligible distortion).
This may facilitate the practical measurement of wavespeed, which may account
for the focus on the S, mode. By contrast, the wavespeed of the 4, mode in-
creases rapidly with frequency at low frequencies, levelling off to a plateau only
at high frequencies. From a practical viewpoint, it is desirable to monitor the
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low-frequency wavespeed, because of the significant attenuation at high frequen-
cies due to microstructural interactions and to viscoelastic effects. Habeger et
al. (1979) report measurements of wavespeed for both the S, and the A, modes,
showing reasonably good correlation between these measurements and the theo-
retical dispersion curves. However, it does not appear to have been appreciated
that the wavespeed measurements for the A,-mode could be used to define a
bending stiffness, in the same manner that the wavespeed of the S,-mode can be
used to define the sonic extensional stiffness in Eq. (3). This MISG suggestion
may therefore provide the basis for a new industry standard for on-line quality
control. From a manufacturer’s viewpoint, the desirable objective is to produce
a specified bending stiffness at minimum basis weight and at the lowest possible
cost. Reliable on-line monitoring of A,-mode wavespeed would clearly assist in
attaining this objective.

The remainder of this report is organized as follows. Section 2 presents the
data provided by Amcor, including a brief discussion on the traditional measure-
ment of bending stiffness. Section 3 summarizes the key concepts and results
of the theory of plate-vibration modes for an isotropic material. This provides
a valuable background for understanding the additional complications due to
material anisotropy. The analysis of platewaves in an orthotropic material, due
to Habeger et al. (1979), is also summarized in Section 3, focussing particularly
on the S, and 4, modes.

2. The bending stiffness of paperboard

Koran and Kamdem (1989) provide a useful survey of several procedures
which are currently used for measuring the stiffness of paperboard, and of the
correlations between these measurements. The two measurements of greatest
interest for this report lead to (i) the static extensional stiffness S = Et, which
is determined from a standard tensile test, using an Instron testing machine,
and (ii) the static bending stiffness, or flezural rigidity, Sp, determined by using
a cantilever specimen, of prescribed standard dimensions, clamped at one end
and subjected to a transverse load at the other. This latter test is known as the
Taber test. It records the load which must be applied (via a roller in contact with
the paperboard at a fixed distance from the clamped end) to cause a prescribed
deflection of 15°.

Table 1 shows the stiffness data obtained by Amcor for various paper prod-
ucts. Tt is noted that the static extensional stiffness, determined from a standard
tensile test, correlates well with (but is consistently lower than) the sonic exten-
sional stiffness, determined from the measured wavespeed of the S, mode using
Eq. (3). The Buchell stiffness is determined by using the same test configura-
tion as for the Taber test described by Koran and Kammen (1989), but simply
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recording the applied load as a measure of bending stiffness, hence the data has
units of mN, rather than mN.m (or, more properly, mPa.m?®) which would be
expected from Eq. (4) for the bending stiffness.

Hard- Effective | Discrep- Static Sonic Buchell
Platen | Thickness | ancy Exten- Exten- | (Flexural)
Thickness (mm) % sional sional Stiffness
(mm) Stiffness | Stiffness (mN)
(MPa.m) | (MPa.m)
0.32 0.22 31 2.15 2.72 168
0.39 0.25 36 2.45 2.81 248
0.45 0.31 31 2.66 3.46 425
0.435 0.30 31 2.23 2.94 340
0.105 0.10 5 0.82 1.09 14
0.22 0.13 41 0.90 1.15 25
0.35 0.27 23 2.17 2.70 263
0.35 0.26 26 2.08 2.75 231
0.24 0.21 13 2.01 2.62 146
0.23 0.16 30 1.63 2.03 72
0.32 0.21 34 0.78 1.02 56
0.40 0.28 30 0.83 1.19 111
0.44 0.30 32 1.06 1.43 154
0.42 0.21 50 0.66 0.83 50
0.10 0.11 -10 0.33 0.46 6.58
0.22 0.14 36 0.35 0.45 11.75
0.36 0.29 19 0.59 0.81 85
0.35 0.27 23 0.59 0.87 72
0.29 0.22 24 0.57 0.77 46
0.23 0.18 22 0.47 0.70 24

Table 1: Amcor data for various paper products

The third column of Table 1 shows the discrepancy between effective and
nominal thicknesses, which was mentioned in Section 1. It can be seen that
the discrepancy varies significantly between various types of product, the larger
values being associated with a larger surface roughness. However, it was soon
established, in discussions with the Amcor representative, that the discrepancies
could not be attributed solely to the surface roughness, which could only account
for a discrepancy of less than 10% in the worst case. Instead, the MISG workshop
identified the pronounced anisotropy of paper products as a possible contributing
factor.
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It is well recognized that machine-made paper products can be regarded as
orthotropic materials, consisting of fibres (typically 2-3 mm long and approx-
imately 0.02 mm in diameter) which are preferentially aligned in the machine
direction (md), leading to a significantly higher Young’s modulus in that direc-
tion than in the cross machine direction (cd) or the thickness direction (zd).
The manufacturing process also leads to a distinctly layered structure, which is
discernible even with the naked eye when tearing or rupturing cardboard and
similar products, or when peeling off sticky tape from a paper substrate. Thus,
the shear modulus in the z-z plane G, (md/zd plane) can be expected to be sig-
nificantly smaller than the md Young’s modulus, E,, 4, particularly in products
of poorer quality.

A proper description of the elastic response of orthotropic materials requires
the specification of nine independent stiffness-coefficients (or elastic constants),
relating the stress components to the strain components. Mann, Baum and
Habeger (1980) have presented a procedure for estimating all nine coefficients
from ultrasonic (wavespeed) measurements, but with varying degrees of accuracy
for the various coefficients. They comment in particular on low values of the zd
stiffness coefficients obtained by this procedure for milk carton stock:

Ema/E2q ~ 200,  Epq/Gag, =~ 50.

For an isotropic material, these ratios would be equal to 1 and 2.6 respectively,
assuming a typical value of 0.3 for the Poisson ratio. This pronounced anisotropy
casts doubts on the validity of classical ezpressions for cantilever deflection in
estimating the bending stiffness of paper products.

The crux of the problem is that the classical expression is based on a kine-
matic assumption which may not be appropriate in the presence of pronounced
anisotropy. This kinematic assumption states that plane sections that are ini-
tially normal to the neutral axis (or the line of centroids) remain plane and
normal to the neutral axis during deformation. It has long been recognized that
the resulting theory ignores the shear deformation associated with flexure, and
its contribution to the deflection. This is equivalent to assuming an infinite value
for the shear modulus. The combination of zero deformation and infinite modu-
lus nevertheless results in a finite shear force, acting normal to the neutral axis.
This shear force has the chaacter of a reaction force, i.e. it is a force required so
as to satisfy the conditions for equilibrium, but it has no deformation associated
with it.

There have been several attempts to develop a refined theory of flexure taking
into account transverse shear deformation, but it is not clear whether any of these
would be entirely suitable for paper products. The problem is that although
these theories eschew the classical kinematic assumption stated above, they still
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retain (implicitly or explicitly) a linear variation of the tensile stress o, across
the thickness,

or(2,2) = z, (6)

where M(z) denotes the bending moment at location z, and I the moment of
inertia of the cross-section. For the case of cylindrical bending, which is an
appropriate idealization for the Taber test, M(z) is to be interpreted as the
bending moment per unit length in the cross direction (cd), and

I = /12 (7)

This linear variation of o, in Eq. (6) leads to the familiar parabolic variation
for the shear stress o, through integration of the equilibrium equation

Orzz + Ozzz = 0, (8)

where a comma is used to indicate a partial derivative with respect to the vari-
able(s) following the comma. However, Rogers and Pipkin (1971) have pointed
out that for cases of pronounced anisotropy, an entirely different stress distri-
bution may be more appropriate; in the limit of “inextensible fibres”, i.e. for
E,4/Gz, — o0, the deflection of a cantilever is entirely due to shear. The corre-
sponding tensile stress can be written in the following form, instead of Eq. (6),

rua(@,2) = T (o~ t/2) — oz + t/2)} (9)
The associated shear stress can again be determined from the equilibrium equa-
tion, Eq. (8): it has a constant value for —t/2 < z < t/2, but suffers step
changes for z = £t/2, so as to satisfy the traction-free boundary condition on
the free surfaces of the cantilever.

What would be desirable, but is currently not available, 1s a theory of flexure
for anisotropic plates which ezhibits a transition from Eq. (6) to Eq. (9) in the
limit of high anisotropy.

It has not been possible within the time-frame of the MISG workshop to
develop such a theory. However, as a suggestion for further work, a plausible
approach would be to assume the following form for the thickness-variation of
the tensile stress,

M(z) 2n*sinh(nz/h)

Taz(2,2) = t2 ncoshn — sinhpy’ (10)

where 7 can be regarded as a non-dimensional anisotropy index, so that for small
7 Eq. (10) reduces to Eq. (6), whereas for large n Eq. (10) reduces to Eq. (9).
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This index should of course be expressed in terms of the elastic constants, but
the appropriate relation is not immediately apparent. Valuable guidance can
be obtained from the stress variation (across the thickness) associated with the
exact solution for plate vibrations, as discussed further in Section 3.

To highlight the significance of accounting properly for the effect of aniso-
tropy, it will be useful to record here the result based on Reissner’s (1947) theory,
which takes into account transverse shear deformation, for the end-deflection A
of a cantilever of length | and thickness ¢, subjected to an end load P (per unit
length in the cross direction),

A=Ay +A,, (11a)
Ay = 4(P/Ema) (1/1), (11b)
A, = P/{10(1 + v3,)Gar} (1/2). (11c)

In this simplified theory, the material properties are characterized by only
three elastic constants: the axial Young’s modulus, E,,4; the axial shear mod-
ulus, G;,; and the Poisson ratio v,,, which is the ratio of the transverse strain
€.» to the axial strain €;; due to an axial normal stress o,,. For the Taber test,
I = 50 mm (Koran and Kamdem, 1989), whereas a typical specimen thickness
t = 0.3 mm, so that [/t = 167. Consequently, the shear contribution A, to the
total deflection would be expected to be negligible compared with Ay, which rep-
resents the classical flexural contribution, in spite of the relatively large ratio of
E..4/G . for paper products. The crucial point, however, is that the formulae in
Egs. (11b, c) for these two contributions are derived on the assumption of a lin-
ear variation for o,, in the thickness direction, as given by Eq. (6), rather than
the more general expression in Eq. (9) which would depart significantly from
a linear variation for large values of E,,4/G., and which could therefore lead
to a quite different shear contribution relative to flexure. The present practice
in paper testing in effect ignores the possible contribution of shear deformation
to the total deflection, and may therefore under-estimate the bending stiffness
for cases where this shear contribution is significant. This in turn would lead
to values of effective thickness which are significantly lower than the nominal
(hard-platen) thickness.

This point deserves further investigation. The relative importance of a shear
contribution in the Taber test could be assessed experimentally by varying the
cantilever length [, and plotting log(P/A) versus log(l/t). If the shear contribu-
tion is indeed negligible, this plot should yield a straight line with a slope of —3; a
significant deviation from this expected slope could be attributed to a significant
shear contribution. Alternatively, a numerical experiment could be performed
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using a finite element package capable of large-deflection analysis and assuming
the appropriate orthotropic elastic constants for various paper products.

3. Dispersion curves for plate waves

A plate of uniform thickness behaves as a waveguide for elastic waves: its
dynamic response to a specified excitation can be expressed (in principle) as a
superposition of its modes of free vibration. These plate-wave modes can be
characterized by (i) the mode shape, describing the variation across the thick-
ness of the elastic displacement u, or of a stress component, and (ii) the disper-
sion curves, which give the relation between the angular frequency w and the
wavenumber k, or equivalently the relation between the phase velocity ¢ and
frequency w, for each separate mode.

The general features of the wave modes for an orthotropic plate, as revealed
by the analysis of Habeger et al. (1979), are quite similar to those for an isotropic
plate. Consequently, it will be useful to review first the key concepts and results
of the theory for isotropic plates, as presented in standard textbooks (Achenbach,
1973; Miklowitz, 1978), and then to point out the additional complications or
features due to anisotropy. The aim is to characterize self-sustaining modes of
vibration which satisfy the following equations of motion (in the absence of body
forces),

pu=V.o (12a)

where p, i1, o denote respectively the density, the elastic displacement and the
stress tensor, using standard notation (see e.g. Achenbach, 1973, or Miklowitz,
1978), subject to traction-free boundary conditions on the plate faces,

O, = 0,, =0, onz==h. (12b)

The plate thickness is taken here to be 2h, in accordance with the notation of
Achenbach (1973) and Miklowitz (1978), instead of the previous notation ¢ used
in Section 2. By using the relation between stress and strain (Hooke’s law), and
between strain and displacement, the equation of motion (12a) can be expressed
in terms of the elastic displacement i1 only,

pit = (A + p)V(V.u) + uViy, (12¢)

where A, p denote the Lamé constants, which are related to the more familiar
elastic constants E, v (the Young’s modulus and Poisson ratio) as follows,

Ev _ E
T+ni-20) " 2140y

(12d)



34 Amcor

A standard procedure for identifying the characteristic free-vibration modes
is to consider a mathematical representation for u which corresponds to pro-
gressive waves of angular frequency w propagating in the direction of the z-axis.
By assuming plane-strain deformation, so that u, = 0, and the remaining two
components of u are independent of y, this representation takes the following
form

ug(z, z,t) = U(z)e!ke=wt)] (13a)

u,(z, z,t) = W(z)e'k===1), (13b)

This representation could now be substituted into Eq. (12a), and by imposing
the boundary conditions (12b), re-expressed in terms of derivatives of the dis-
placements, one would obtain the dispersion equations relating w to k. However,
for isotropic plates, it is conventional to first express the displacement u in terms
of two scalar potentials, because the resulting wave equations for these potentials
are de-coupled, whereas the equations for u, and u, are coupled. The displace-
ment fields associated with these two potentials have a different character and
different wavespeeds. One potential leads to equivoluminal motions (V.u = 0),
with the displacement normal to the direction of propagation, i.e. to transverse
waves, which have a wavespeed given by

er = (u/p)"*. (14a)
The other leads to longitudinal waves (V X u = 0), with
cr = {(A+2)/p}". (14b)
The ratio of these two wavespeeds depends only on Poisson’s ratio v,
k=cpjer = {2(1 - v)/(1 - 2v)}"/2. (14c)

Thus, the displacement in Egs. (13a, b) can be viewed as a superposition
of two types of body wave, each with a well-defined wavespeed independent of
the direction of propagation. These two types of wave are coupled through the
boundary conditions (12b), leading to the following dispersion relation

+1
tan(Bh) 4k?ap
) [ e| e
a=/w?/cr? —k?, (15b)
B =y/w?/er? — k2, (15c¢)

where the choice of exponent in (15a) corresponds to symmetric and anti-sym-
metric modes respectively (Achenbach, 1973).
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Although these equations were first derived by Rayleigh and Lamb a century
ago, a comprehensive characterization of the resulting dispersion curves has not
been achieved until comparatively recently, through the work of Mindlin (1960).
The corresponding dispersion relation for waves in orthotropic plates (Habeger
et al., 1979, Eq. (20)) has the same structure as (15a), but its derivation is signif-
icantly more complicated, so that it will be worthwhile discussing the properties
of (15a) first.

3.1 Summary of results for isotropic plates

The dispersion curves corresponding to (15a) can be constructed by con-
sidering a fixed value of the wavenumber k (>0) and solving (15a) for the cor-
responding values of angular frequency w(k;n) where the integer n serves to
index the possible solutions, which correspond to the various permissible modes
of vibration. There are in fact two classes of solutions, associated with defor-
mation states which are either symmetrical or anti-symmetrical with respect to
the plate’s mid-plane z = 0. For each of these two classes, there is an infinite
number of possible modes. The two lowest-order modes, corresponding to n = 0,
will be denoted by S, and A,, respectively.

In attempting to find the roots of (15a), it is useful first to identify three
sectors in the first quadrant of the w — k plane, as follows:

0<w/k<ecr, a, @ imaginary; (16a)
cr <wlk < ep, a imaginary, 8 real; (16b)
e <w/k < 00 a, f real. (16¢)

The solutions for the two zero-order modes, S, and A,, fall within the first
sector, described by (16a), so that the tan functions in (15a) are effectively
tanh functions with a real argument. To proceed systematically, it would be
appropriate at this stage to define non-dimensional variables. However, for the
present purpose of summarizing the results, it seems preferable to retain the
original physical variables.

The important features of the dispersion curves are (i) the behaviour for long
and short wavelengths (kh << 1 and kh >> 1, respectively), and (ii) the cut-off
frequencies for higher-order modes (n > 1).

Consider first the zero-order modes S, and A,. The long-wavelength be-
haviour obtained by retaining only the leading terms in (15a) for kh << 1 can
be shown to agree closely with the predictions of simplified engineering theories
of plate waves (Mindlin, 1951). At the other extreme, for kh >> 1, the ratio
on the left-hand side of (15a) tends to unity, and (15a) reduces to the equation
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for Rayleigh surface waves on a half-space. Various approaches can be used to
construct analytical approximations for the dispersion curves, so as to reproduce
correctly the asymptotic behaviour for long and for short wavelengths.

The phase velocity c is defined by
c=w/k. (17a)

By using this relation, a dispersion curve can be equivalently presented as a
relation between the phase velocity ¢ and the angular frequency w, with the
wavenumber k as a parameter. This alternative presentation is used by Habeger
et al. (1979) for the orthotropic plate.

The group velocity ¢y, defined by
¢g = dw/dk, (17b)

can be interpreted physically as corresponding to the speed for transport of en-
ergy in a dispersive-wave motion, and it is therefore the more physically mean-
ingful wave speed, compared with the phase velocity. From (17a, b) it follows
that these two wavespeeds are related by

cg = ¢+ kdc/dk. (17¢)

It can be shown that the group velocity ¢, tends to the phase velocity ¢ in
the limit kh >> 1, and it follows from (17c) that the curve of ¢ versus k, or
equivalently of c versus w, tends to a horizontal asymptote which corresponds
to the surface-wave speed in a half-space.

At the other extreme, the cut-off frequencies for higher-order modes (n > 1)
can be obtained by taking the limit £ — 0in (15a). Given that k is the wavenum-
ber in the direction of propagation (the z-direction), a plate vibration in the limit
k — 0 can be interpreted as a one-dimensional standing wave in the thickness
direction (zd).

This summary of key results and physical interpretations for waves in isotro-
pic plates provides a useful reference point for discussing the more complicated
orthotropic case.

3.2 Results for orthotropic plates

The existence of orthotropic plate-waves can be explored by assuming the
form given in (13a, b) for the components u,, u, of the elastic displacement,
as for the isotropic case. The greater mathematical complexity encountered
for an orthotropic medium can be attributed physically to the fact that the
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phase velocity for plane waves now depends on the direction of propagation,
and while the equations of motion (12a) again lead to two possible wavespeeds
for bulk plane-waves, as for the isotropic case, the associated deformations are
no longer purely transverse or purely longitudinal, except when the direction
of propagation coincides with a principal axis. Thus, it is no longer possible
to introduce displacement potentials to de-couple the equations for u, and u..
There are nevertheless many similarities with the isotropic case.

The dispersion relation is now given by the following equation (Habeger et
al. 1979), instead of (15a),

tan(ah)

(a/k)? = —B ++/(B? — 4D)/2, (18b)
(B/k)* = —B — y/(B? - 4D)/2, (18¢)

where the plus and minus sign in the exponent of (18a) again correspond to sym-
metric and anti-symmetric modes respectively, as for (15a); B, D, Gpm, Hpm
are given by complicated expressions involving the orthotropic elastic constants
which will not be reproduced here. It is sufficient to note that the right-hand
side of (18a) depends only on the wavenumber k (or, more precisely, on the non-
dimensional combination kh), whereas a, § depend in addition on the angular
frequency w, as in the case of (15b, c¢). Thus, the dispersion curves can again
be constructed by solving (18a) for w as a function k, and it is again convenient
to divide the first quadrant into three sectors, depending on the sign of a? and
B2, as in (16a—c). The cut-off frequencies for higher-order modes can again be
obtained by setting ¥ — 0, and the resulting motions interpreted as standing
waves in the thickness direction (zd). This highlights the importance of the two
bulk-wave speeds in the thickness direction, given by

i) _ (1 "

er = (Css/p)'/?, (19a)

ez = (Cs3/p)'/%, (19b)

where C33, Cs5 are two of the four elastic constants required to character-
ize plane-strain deformation in an orthotropic material, with its principal axes
aligned to the coordinate axes as assumed here, while p denotes the material’s
density. The wavespeeds in (19a, b) correspond respectively to transverse and
longitudinal waves, as indicated by the subscripts. These equations would reduce
to the earlier expressions (14a, b) for the special case of an isotropic material. It
is noted that when the dispersion curves are plotted as phase velocity ¢ versus
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frequency w, as in Habeger et al. (1979), the cut-off frequencies can be read-
ily identified by the fact that the curves exhibit a vertical asymptote as these
frequencies are approached from above.

For the purposes of deriving material properties from on-line ultrasonic mea-
surements, however, it would appear to be best to concentrate on the lowest-
order modes, S, and A4,, which have no cut-off frequency. In particular, the
long-wavelength behaviour of the 4, mode should provide a directly useful mea-
sure of the bending stiffness, as noted in Section 1. A straight-forward expansion
for kh << 1, as given by Habeger et al. (1979), leads to the standard relation
for wavespeed versus frequency that would be obtained from engineering plate
theories. It was pointed out at the MISG workshop that this long-wavelength
(or low frequency) behaviour could therefore be used to define a sonic flezural
rigidity as follows,
ct(w; 4,)

Sy =W 2

, (20)
where W denotes the basis weight and ¢(w; A,) the wavespeed for the A, mode.
This definition is analogous to that of the sonic extensional stiffness in (3), but
it does not appear to have been used previously in the present context.

The exact representation which is available from Habeger et al. (1979)
for the thickness variation of the stress components for given vibration modes
could also be used to examine systematically the possible effects of pronounced
anisotropy discussed in Section 2. In particular, this representation suggests
that the right-hand side of (18¢) could provide a more systematic definition for
a non-dimensional index of anisotropy 7, than the previous line of argument
leading to (10). The significance of this parameter is that an entirely different
combination of elastic constants may be involved if one considers the limiting
form for large 7, before deriving an asymptotic expansion for kh << 1. This
point deserves further investigation.

Finally, it is noted that in the short-wavelength limit, the left-hand side of
(18a) tends to unity, as in the case of (15a), and the resulting equation for the
surface-wave speed along a principal direction (md in the present case) represents
a generalization of the Rayleigh equation for surface waves on an isotropic half-
space. It is possible to construct analytical approximations for the dispersion
curves over the entire frequency range by devising suitable methods of repro-
ducing the exact asymptotic behaviour for short and for long wavelengths. This
could be achieved by adapting the approach used by Mindlin (1951) for isotropic
plates, or, more simply, by postulating a suitable form for an interpolating func-
tion. The latter approach, using a rational function (Padé approximant), has
been found to give results which are within 5% of the exact dispersion curve for
a choice of elastic constants representative of chipboard (J. Ennis-King, private
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communication, March 1994). Such analytical approximations would greatly fa-
cilitate the task of reconstructing elastic stiffness coefficients from on-line mea-
surements of wavespeed, while retaining an accurate account of the effects of
pronounced anisotropy, and they deserve further investigation.
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