
The flow of perfectly plastic material between elastic rolls is examined
as a model for rolling of foils. Key non-dimensional parameters are
identified and the potential for approximate solutions, based on an
asymptotic analysis, is examined.

Industrial Automation Services Pty Ltd (IAS) provides technical consulting
and software engineering services to the steel, aluminium and coal industries.
They are currently implementing computer models for cold rolling of foil based
on mathematical models that have recently been published in the literature
(Fleck and Johnson, 1987, and Fleck et ai., 1992).

A key feature of foil rolling is the fact that the elastic deformation of the
work roll is strongly coupled to the plastic flow in the nip (the region between a
and b in figure 1). This is also the case in elasto- hydrodynamic lubrication (see
for example Johnson, 1984) where there is fluid flow in the nip. However, in this
case a number of simple and useful approximate and asymptotic solutions have
been derived. Since the qualitative nature of the solutions with plastic and fluid
flows have been observed by IAS to be similar, the question posed by IAS to the
study group was whether asymptotic and approximate solutions could also be
derived for foil rolling.
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radius of work roll
half width of strip in roll gap at z
half width of strip at inlet
half width of strip at exit
velocity of strip at z
peripheral velocity of work rolls
coefficient of friction at z
coefficient of friction
normal stress on yz plane at z
normal stress on zz plane at z
pressure at z
frictional shearing stress at z
yield stress of strip
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Young's modulus of work roll
Poisson ratio of work roll
Elastic constant in mattress approximation
elastic deformation of work roll at :c
:c co-ordinate of inlet
:c co-ordinate of outlet
:c co-ordinate of end of first deformation region
:c co-ordinate of beginning of second deformation region
Tension on strip at inlet
Tension on strip at outlet
Pressure on strip at inlet
Pressure on strip at outlet
JR/hi po
kKR/Ehi
(1- v2)kKVR/E.jhi

IT we assume that stresses do not vary through the strip and that the gap
(the region between c and d in figure 1) is essentially parallel to the :c axis, the
equation of equilibrium in the :c direction is given by

Furthermore if O'xx and O'yy correspond to the principal stresses, the yield con-
dition for ideal plastic flow is



On assuming that the strip is in contact with the roll over the entire nip region
and that the frictional shearing stress is given via Coulomb friction, we obtain

/'(0) = {

dp dh
h dz - k dz + pp = 0

The half width of the strip is given by the differential equation

dh z de-=-+-dz R dz

and during the MISG, we considered the following two approximate relationships
for the elastic deformations
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Equation (3.7a) is the mattress approximation which simply says that the elastic
deformation is proportional to the applied pressure. While it is known to be a
poor approximation, it is quite useful as it can often lead to insight into elastic
contact problems. A more appropriate (and also more complicated) relation for
the deformation is given by (3.7b) which is derived from Hertz contact theory
when friction is neglected. Since Po < < 1, this is a reasonable approximation.
It should be noted that the integral in (3.7b) must be interpreted as a Cauchy
principal value integral.

The plastic flow equation (3.5) and the elastic deformation equation (either
(3.7a) or (3.7b)) need to be augmented by some boundary conditions, parameters
and constraints. They are
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As is indicated in figure 1, there are essentially three regions in the mill nip.
At the inlet there is an initial region of reduction a < z < c. This is followed
by a central region c < z < d where little or no reduction occurs. Finally, there
is another region of reduction d < z < b at the outlet. In Fleck and Johnson
(1987) and Fleck et ai. (1992) these regions are part of the model formulation
and the plastic flow equation (3.5) is replaced by

p(z) 0, z<a (3.9a)
dp dh 0, (3.9b)h- - k- - JLoP a<z<cdz dz

dh c5,z<d (3.9c)- 0,dz
dp dh 0, d<z<b (3.9d)h- - k- + JLoPdz dz

p(z) 0, z > b (3.ge)

A first step in examining foil rolling was to cast the equations in non-
dimensional form with a view to simplifying the equations and to determine
important non-dimensional groups. The following scaling was used

P ~ kp
z ~ JRhi z
a ~ JRhia
b ~ JRhib
c ~ JRhic
d ~ JRhi d
e ~ hie
h ~ hih
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Typical values for the parameters are given in table 1. From these values we
find that the length scale JRhi is consistent with the solutions calculated using
the IAS model even though this length is based on scaling of a rigid work roll. Of
the three non-dimensional groups G1, G2 and G3, only G2 potentially exhibits an
extreme behaviour (ie: is either large or small) if we assume that K = 0(1). This
is of concern as it suggests an inconsistency between the two approximations for
elastic deformation of the work roll. Since G2 is the parameter associated with
the mattress approximation we expected it to be comparable with G3 which is
the corresponding parameter for the more realistic elastic deformation model.

Coefficient of friction Po 0.02 - 0.05
Yield stress k 200 - 500 MPa
Strip entry thickness h· > 0.005 mm•
Work roll radius R 80 -150 mm
Work roll modulus E 200,000 MPa
Strip speed v 5 - 20 mls

Nevertheless, the mattress approximation was pursued with the assumption
that G3 » 1. Then, from (4.1) and (4.3a)

dh dp
-=:c+G2-
d:c d:c



(h - G2) :: + {lp = ;c (4.5)

However, h = 0(1) and {l = 0(1) so that (4.5) with G2 » 1 is incapable
of exhibiting the boundary layer behaviour observed in the IAS model. The
cause of the inconsistency was thought to be the choice of length scale VRhi
and/or the assumption K = 0(1). Since it was clear that an analysis would not
generalize to the more realistic elastic deformation (equation (4.3b)) the matter
was not pursued further.

Since no large or small non-dimensional parameters were identified for the
IAS model, the assumption of distinct inlet and outlet regions was questioned.
Specifically, it was felt that equations (3.9) should be the equations for the inner
and outer solutions of a singular perturbation problem and that a lack of a
suitably small non-dimensional parameter meant that such simplifications could
not be sustained. However a concensus on this point was not reached.

Another point questioned was the continuity of the pressure. A simple anal-
ysis suggested that there may be a logarithmic singularity at the point ;c = b
but again there was not a concensus on this point.

Finally, a number of proposals for numerical schemes were made but as these
could not be demonstrated to be superior to the scheme employed by lAS, they
are not reported here.
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