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The problem presented at the workshop by John Skelton of Albany International concerned the
dynamics of a roll press nip, a crucial component in a paper-making machine. Modern commercial
paper-making machines are huge items of equipment. They may be as long as a football field and
cost many millions of dollars each. Integrity of the process is extremely important; the paper in such
a machine travels so fast (up to 20 km/sec) that a break is viewed as a major calamity and may
take many man-hours and dollars to recover from. The size and speed of the machines means that
it is not easy to make measurements as the paper passes through. The hostility of the environment
therefore dictates that a thorough theoretical understanding of the important parts of the process
is crucial if the processes involved are to be optimized.

A modern paper-making machine is divided into three sections: a forming section, a pressing
section and a drying section. In the forming section, raw materials are combined to form a wet paper
mixture. The priority is now to removethe maximum possible amount of water without affecting the
structural integrity of the paper. Most of the required water removal is accomplished in the pressing
section, and it is this part of the machine that we wish specificallyto study. The key requirement of
the press section is that water removal should be via mechanical means, for though thermal drying
is employed at later stages (in the drying section) in the paper-making process, it is much more
expensive than a simple squeezing process when the water content of the paper is high.

The basic mechanical means by which the press section of a paper-making machine functions
involves the process of squeezing the paper between two rollers. This happens many times and in
many different ways to a single portion of the paper sheet; we shall examine a single pass through
such a "Roll press nip". A great deal of water is removed by this process; typically on first entry
into the roll press nip the paper consists of 20% fiber and 80% water whilst on exit from this part
of the paper making machine the water content has been reduced to 60%. The remaining water is
then removed by the drying section of the machine, after which it comprises roughly 5% water.

A schematic diagram of a typical roll press nip is shown in figure 1. The two steel rollers are
typically each about 1m in diameter. The just-formed paper (typically about 0.5mm thick) enters
the roll press nip seated on a fabric sheet (hereinafter referred to as "felt"). The felt is a fabric
that is composed of nylon textile fibers (typical diameter 20j.t); it may be regarded as a porous
medium that, in its undeformed state, is about 3mm thick. Before deformation under the rollers,
the felt has a solid volume fraction of about 50%; during loading, this may increase to 80%. As the
paper sheet and fabric enter the nip region, both are compressed. During compression the fabric
structure deforms and the water is squeezed out of the paper and the fabric. Although a number
of different arrangements are possible, the water usually passes into the bottom roller via holes or
slots. We therefore assume that, once the water has been squeezed out of the paper and the fabric,
it disappears. After the squeezing has taken place, the felt is removed by the bottom roller, whilst
the paper remains in contact with the top roller for a little longer; the paper is then wound on to a
smaller paper roller. In this way the felt travels in a closed loop. A typical feed speed is about 20m/s
and the pressure under the rollers may reach lOMPa. Of course, a roll press is a very complicated
item of equipment and we have only been able to indicate its main features; the interested reader
may find more details in Reese (1999).
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In this study we do not seek to answer anyone specific question, but rather wish to propose a
general framework for modeling the flow and deformation under a roll press nip. Because of the
difficulty of making measurements in the nip region and the need to closely control the process, the
distributions of pressure, velocity and felt porosity within the nip have traditionally been subjects
of great debate.

Previous treatments have included lubrication theory models and "Bernoulli" based models.
Although some progress may be made using thin layer theory, we shall show the required modeling
does not take the form of standard lubrication theory. As far as models based on Bernoulli's equation
are concerned, we simply note that the discussion below shows that the drag force exerted by the
felt on the liquid is a key physical component of the flowprocess. Clearly, a full three-phase flow
treatment is required. In this study we will thus address the followingquestions:

(i) Is it possible to propose a general theoretical treatment of the roll press nip?

(ii) What determines the physics of the water movement within the paper and felt in the roll press
nip and how is this connected to the details of the air movement and the deformation of the
felt?

(iii) When a general model has been proposed, is it possible exploit the geometry within the nip
to generate some simple exact solutions?

(iv) What are the key non-dimensional parameters in the problem and how large are they likely to
be for realistic paper-making machines?

A further matter of interest concerns the influence that the size, shape and separation of the
rollers have on the whole process.

We approach the modeling from a rather general point of view, beginning by including all effects
that might be important and then making clearly defined assumptions to simplify the equations. In
this way it is possible to make changes to the model if circumstances change.

2 Three phase flow modeling
A general roll press nip consists of two materials, namely paper and felt, each of which may contain
either water, air, or water and air. The water and air may flowand the paper or felt may compress
or expand; it is therefore necessary to treat the problem as a three-phase flow model. We do not
distinguish henceforth between paper and felt, regarding the paper as being essentially the same
as felt, save for the fact that the material properties are different. The three phases that will be
considered are therefore water, air and felt.

We assume that both the water and the air are incompressible, so that any flowthat takes place
does so with a constant density; the compressibility of the water is certainly negligible and though
compressible effects concerned with the flowof the air could be included if required it seems highly
unlikely that they will be important. They are thus henceforth ignored. Since the rollers are also
extremely long, we shall also ignore end effects and consider only a two dimensional model of the
process (though the equations that we propose are completely general and thus applicable to three
dimensions) with position vector given by x = (x, z)T. Since we wish to propose a model that
combines both flow and elasticity, notation is something of a problem; after some consideration we
finally decided to denote the water (liquid), air and felt velocitiesby ql = (Ul, Wl)T, qa = (ua, wa)T
and qf = (uf, Wf)T respectively and the felt displacements by U = (U, W)T. Before the rollers
(and any upstream influence that they might generate) are encountered, we assume that the air and
water filled felt moves with a speed Uoo '" 20mjs and thus ql = qa = qf = (uoo,O)T, and also that
U = (uoot, O)T and the void fractions ofliquid and air in the felt are known. A schematic diagram of
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the flow region is shown in figure 2. The region under which the influence of the rollers is perceived
and water is squeezed out of the felt is assumed to have length L '" O.02m,and a typical distance
between rollers is denoted by ho '" O.002m.We denote a typical pore size in the felt by a '" 1O-5m.

We begin with a rather general form of the three phase flow mass and momentum conservation
equations for the liquid, air and felt respectively (for a derivation see, for example, Drew & Wood
(1985)): these are

(Pla)t + \7·(Plaql) =
(Pa{3)t + \7·(Pa{3qa)

(p/(l - a - (3))t + \7.(p/(l- a - (3)q/) =
(Plaql)t + \7·(PlaQlQl)

(Pa{3Qa)t + \7·(Pa{3QaQa) =
(p/(l- a - (3)Q/)t + \7.(p/(l- a - (3)Q/Q/)

o
o
o
\7.(a(Tl + Tfe)) + aplb + Ml
\7.({3(Ta + T~e)) + (3Pab + Ma
\7.((1 - a - (3)(T / + T7e)) +
(1- a - (3)p/b + MI'

Here the densities of the liquid, air and water are denoted by Pi, Pa and p/ respectively. The
volume fraction of liquid is denoted by a and the fraction of air by {3,and b denotes the applied body
force. The stress tensors of the liquid, air and water are denoted by Tl, Ta and T/ respectively,
whilst the corresponding stress tensors arising from Reynolds stresses are denoted by Tfe, T~e andT7e. The M i (i = £, a or f) denote the interfacial momentum source terms.

It is important to remember that (1)-(6) (which have become the recognized starting point for
models of many different multiphase flowregimes) are posed entirely in terms of ensemble averaged
variables, the ensemble average < I> of a field I(x, t) being defined by

< I> = 1M I(x, tj ()dp(),

where p( () is the probability of observing the result ( and M the set of all such results. Space does
not permit a discussion of the effects of averaging on the equations, but it is worth noting that (a)
The M i terms are a direct result of the averaging process and (b) that all profile coefficients (terms
arising from the fact that the product of the average is not equal to the average of the product) have
been set to unity.



It is now necessary to make some assumptions to proceed. It has become normal (see, for example
Drew & Wood (1985)) to write

Mt = Pli'Va + M~
(with similar definitions for M a and M f), where Pki is the average interfacial pressure of phase k
and the terms M~ contain all forces that are related to drag, virtual mass, Bassett and Faxen forces
and any other unsteady flow effects that might be important. In this case, we ignore all such effects
except for the interphase drag forces and denote the drag force per unit volume on phase i due to
phase j by

Dij. Additionally, we assume that since the liquid and air flows through a porous medium, the
flow is laminar and so there are no Reynolds stress terms. Given that we will later propose models
for the drag forces, we assume that this accounts for all the important effects of viscosity, and thus
in the liquid and air phases the stress tensors are given by T t = -Ptl and T a = -Pal respectively.
(Here and henceforth we use bold face for both vectors and tensors; the context should ensure that
this results in no confusion.) We also assume that the only body force that may be important is
gravity, For convenience, we also write "(= 1 - a - {3.The equations thus become

(Pta)t + 'V·(Ptaqt) = 0 (7)
(Pa{3)t+ 'V·(Pa{3qa) = 0 (8)
(pn)t + 'V·(pnqf) = 0 (9)

(Ptaqt)t + 'V. (Ptaqtqt) = -'V(apt) +Pli'Va + aptg + Dta + Dif (10)
(Pa{3qa)t+ 'V·(Pa{3qaqa) = -'V({3Pa) +pai'V{3+ {3Pag+ Dat + Daf (11)
(pnqf)t + 'V·(pnqfqf) = 'V.("(T f) +Pfi'V"( + "(Pfg + Dft + Dfa (12)

The equations (7)-(12) may be regarded as "general" equations for the roll press nip, but cannot
be used in their present form; even if we assume that the drag forces are all known and the felt stress
tensor is known in terms of the felt displacement, the system (thought of in three space dimensions)
comprises 3 + 9 = 12 equations in the 20 unknowns qil qa, qf' U, Pt, Pa, Ph Pti, Pai, Pfi, a and
{3. We must now therefore introduce some further simplifying assumptions into (7)-(12). First,
Newton's third law implies that the relevant drag forces are equal and opposite so that

for i, j = f, a or f.
Next, we consider the relationship between the bulk and interfacial pressures. For simplicity we

shall assume here that the bulk pressure in each phase is equal the interfacial pressure. Of course,
this assumption is evidently false. For inviscid flowaround a sphere, for example, it is clear that the
fluid pressure far from the sphere must be different from the pressure on the surface of the sphere;
such phenomena are usually referred to as "Bernoulli effects". In this scenario, however, we expect
that the errors introduced by the neglect of Bernoulli effects (which could be included in a fairly
simple manner if desired) will be small. Additionally, we observe that it will transpire that the
inertia terms in the equations are small and may be ignored. Though it is well-established that the
neglect of Bernoulli effects may lead to serious errors (including change-of-type difficulties; see for
example Fitt (1996» when inertia is important, no such problems arise for inertia-free multiphase
flow.

A further assumption will now be made concerning the pressures - it will be assumed that the
phasic bulk pressures are equal so that Pt = Pa = Pf = p. This assumption is tantamount to ignoring
any surface energy effects (and these could easily be incorporated into the model if desired).

Finally, we assume that the stress tensor T f in the felt may be written as

"(Tf = -,,(Pfl + Tf,

where the felt deviatoric stress tensor T f accounts for effects not due to pressures (i.e. those due to
elastic deformations). (We note that since by convention P > 0 is taken to signify compression, the



presence of the terms -,p and r f in the above formulation of T f implies that r f22 > 0 corresponds
to a state of positive tension.) This gives the "working equations"

at + V.(aqi) 0
(3t+V.({3qa) = 0

,t + V·C/qf) = 0
(Piaqi)t + V·(Piaqiqi) =

(Pa{3qa)t+ V·(Pa{3qaqa)

(pnqf)t + V·(pnqfqf) =

-aVp +apig + Dia + Dif
-{3Vp + {3Pag- Dia + Daf
-,Vp+ V.rf + ,Pfg - Dif - Daf

(13)
(14)
(15)

(16)
(17)
(18)

2.1 Dimensional Analysis
Non-dimensionalisation of (13)-(18) may now take place. We scale according to x = Lx*, t =
(L/uoo)t*, qi = uooqi (for i = l, a or I), U = LU*, p = Ep*, Dij = (E/ L)Dij (for i,j = l, a
or I) and rf = Erj where the stars (which will henceforth be dropped) indicate non-dimensional
variables and E is Young's modulus (= J.L(3.\ + 2J.L)/(.\ + J.L) in terms of the Lame constants). Some
comment is appropriate concerning the choice of length scale: both of the other two important
length scales in the problem (a and ho) are much smaller than L, so for this initial consideration of
the sizes of various terms in the equations we scale using L. Later, when we want to take advantage
of the fact that ho/ L « 1, it will be appropriate to rescale accordingly. Rearranging, we find that
the non-dimensional equations are

at + V.(aqi) = 0
(3t+ V·({3qa) 0

,t + V.C/qf) = 0

el[(aqi)t + V.(aqiqi)] =
ea[({3qa)t + V·({3qaqa)]

ef[C/qf)t + V·C/qfqf)]

-aVp - Aiaez + Dia + Dif
-(3Vp - Aa{3ez- Dia + Daf

-,Vp+ V.rf - Anez - Dif - Daf

where ez is a unit vector in the z-direction and the non-dimensional parameters ei and Ai are
defined by

. 2 Le. - P.uoo A. _ Pig
.- E' .- E

for i = l,a or f. Since Uoo '" 20m/s, L '" O.02m,E '" 107pa, Pf '" Pi'" 103kg/m3 and Pa '" 1kg/m3,
none of the ei exceeds 4 x 10-2 and none of the Ai exceeds 2 x 10-5. Thus the effects of both
inertia and gravity may be ignored. We also assume at this point that the only drag force that is
important is the drag force between the liquid and the felt; once again other drag forces could be
included as required. Thus D ia = D af = 0 and we obtain the non-dimensional equations

at + V.(aqi) = 0 (19)
(3t+ V·({3qa) 0 (20)
,t + V·C/qf) = 0 (21)

0 = -aVp+Dif (22)
0 = -{3Vp (23)
0 = -,Vp+ V.rf - Dif (24)

These equations apply to either saturated or unsaturated regimes of flow, for from (23) we see that
in the former case we have {3= 0 and Vp =1= 0, whilst in the latter {3> 0 and Vp = O.



2.2 Constitutive Assumptions
In order to close (19)-(24) it is now necessary to make a number of constitutive assumptions. We
attend to each assumption in turn:

For the drag De! exerted on the liquid phase by the felt we assume that Ergun's law applies so that
(in dimensional variables)

/lea
De! = - a2k(a) (qe - q!)g(Rep,a),

where 9 is dimensionless, the pore scale Reynolds number Rep is defined by

Rep = ape I qe - q! I
/le

K = LUoo/le
Ea2 •

To understand the rationale behind (25) and (26) it is best to return to Ergun's original paper
(Ergun, 1952). Ergun considered flowthrough packed granular beds under gravity, finding that the
pressure drop across the bed was due to a combination of what he called "kinetic" and "viscous"
energy losses. For a bed of height Lb composed of particles with an effective diameter Dp, he
found (based on experimental correlations and dimensional analysis) that, for a very wide range of
conditions, the pressure drop LoP was given by

where ¢ denotes the fractional void volume in the packed bed and /le the dynamic viscosity of the
liquid. It should be noted that here, in accordance with custom, Ergun measured the pressure drop
LoP in units of pressure/g ("hydraulic head"). The pressure drop formula (27) has become accepted
as being a good model for the drag through many different types of bed, including porous media.
The first term in (27) may be interpreted as a "Darcy" term, (more important when the flowspeed
and the permeability are low) and the second (the kinetic term) as a pressure loss that is more
important when the flow speed is higher. Of course, a general interpretation of (27) requires that
(a) relative velocities are used and (b) the second term is changed to 'Ue I 'Ue I to take account of
multidirectional flow. In terms of our pressure p (i.e. measured in units of force/unit area) we thus
have

Lop = 150(1- ¢)2 /leue + 1 75 1 - ¢ peu;
L ¢3 D~ . ¢3 Dp•

In the present case it is unclear which of the Darcy or kinetic terms is the more important, which
is why we use the general law (25) (though for simplicity most of the subsequent detailed calculations
will be carried out using the Darcy term only). Some idea of the relative sizes of the the two terms
on the right hand side of (27) may be gained, however, by considering the ratio Rd of the first to
the second term. We find that



where Vt "" IO-6m2/s is the kinematic viscosityof the liquid. Rd may thus be thought of as an inverse
pore Reynolds number which includes a scale factor that reflects experimental results. To estimate
Rd we need to estimate Ut and Dp: tentatively taking Ut "" 2m/s, Dp "" 1O-5m and Vt "" 10-6 gives
Rd '" 4.3 which probably indicates that both the Darcy and kinetic terms are important. In the
absence of any firm data however, we postpone further discussion of this topic and simply use (26)
from now on.

To allow proper consideration of the elastic forces in the problem we must first relate the elastic
displacements to the felt velocity. This is easily accomplished by observing that, by definition,

The equation (28) is not strictly a constitutive law, and to complete the specification of the problem
it is necessary to state how the stress tensor in the felt depends upon the felt displacements. Tradi-
tionally, most deformable porous medium models have made the simplifying assumption that linear
elasticity applies, and we shall do so here. Nevertheless, there is also some experimental evidence
that suggests that the felt does not behave as a linearly elastic body, but rather is able to compress in
a vertical direction without expanding at all in a horizontal direction. In reality, the felt is composed
of a complicated juxtaposition of different nylon layers, and though it is clearly much too hard to
try to model the mechanical properties of the felt in any detail, we wish to allow for the possibility
that the felt may compress without expanding. We thus propose (and later evaluate) two different
elasticity models:

r; = ~diV*U* 1+ ~(V*U* + V*U*T).

In the most general cases we expect that .>. and f.L may depend on 'Y(though in the calculations
presented below, we simply assume that the Lame constants are independent of the void fractions).

To propose an elastic model that mimics some of the observed experimental behavior of the felt
we assume that the felt is completely rigid (incompressible) in the horizontal direction, but can be
compressed vertically. This is tantamount to assuming that (in dimensional variables)

U _ ( uoot )
- W(x,z,t)

and thus in non-dimensional variables U* = (t*, W*(x*, z*, t*))T. With this constitutive assumption,
the x-component of the felt momentum equation effectivelydisappears and the horizontal felt velocity
is known. There is a great advantage in treating the elasticity in the problem in this fashion, for
the problem may now be closed by assuming that 7f22 is a "known" function of the felt fraction 'Y.
Since experiments have been carried out, it is reasonable to assume that this function will be quite
well established; in any case, it is clear that the functional form of 7f22 must be as shown in figure
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Figure 3: Functional form ofrelationship between 7f22 and "I. (Point of zero stress assumed to occur
at "I = "Ii')

3. It is worth pointing out again that 7f22 should regarded as a tension force; as shown in figure 3
infinite tension (7f22 ~ (0) implies zero felt fraction, whilst when the tension tends to -00 (infinite
compression) the felt fraction is 1: the elastic tension in the felt is assumed to be zero when "I = "Ii·

We shall see later that modeling the felt elasticity in this way allowsa great deal of progress to be
made in closed form; it should be remembered, however, that we are essentially proposing a nonlinear
theory where the elastic displacements are not small. Wemay anticipate that a theoretical derivation
of this model involving any rigor might be very hard to carry out, and the detailed assumptions that
this model is based upon are therefore a little unclear.

Now that the model has been posed in some generality in the form of (19)-(24) and the constitutive
laws for drag and elasticity discussed in section 2.2, it is possible to analyze a number of particular
cases. Space does not permit a full analysis of each case; we either indicate the methodology that
would need to be employed to calculate solutions, or proceed in some detail to obtain results.

3.1 Linear Elasticity - Arbitrary Geometry
When we assume that the felt deforms as a linear elastic medium, we may separate the flow into
two distinct regimes, namely saturated (no air present) and unsaturated ((3 > 0). When (3 > 0,
(23) gives p = 0 so that Dlf = 0 and thus ql = qf' When (3 = 0, (20) and (23) vanish and it is
convenient to add (22) to (24). In these two regimes the non-dimensional equations are therefore

at + V'.(aql)

(3t+ V'·((3qa)
"It + V'·("(qf)

ql = qf
\l.Tf = 0

Ut + (qf'V')U = qf

~ (divU)I + ; (V'U + V'UT)

(29)

(30)

(31)

(32)
(33)
(34)

(35)

o
= 0
= 0



Saturated:

O:t + 'V.(o:qi) = 0 (36)
"ft + 'V·("(qf) = 0 (37)

o:'Vp = Dif (38)
'V.Tf = 'Vp (39)

Ut + (qf''V)U = qf (40)

Tf = ~(diVU)I + ;('VU + 'VUT
) (41)

Dif
Ko:

(42)= - k(o:) (qi - qf )g(Rep, 0:)

The methodology for determining the solution in each region is as follows: for unsaturated flow, we
begin by solving the decoupled equations (33) to determine the felt displacements. The felt velocity
qf may then be determined by solving (34). The liquid velocity qf is now known from (32) and
the volume fraction of liquid may be found by solving (29). The equation (31) may now be solved
to determine 13. The only quantity that cannot be determined is qa (equation (30) is only a scalar
equation); if a detailed profile of qa was required then the model would have to be changed slightly
so that other drag terms (which we have taken to be zero) are included. It seems rather unlikely
however that knowledge of qa might ever be helpful.

Calculations continue in unsaturated regions of the flow as described above until 13 first becomes
equal to zero. The saturated flow equations must then be solved. The simplest way to proceed in
general seems to be to first add (36) to (37) and express qi in terms of qf' We may then eliminate
'Vp between (38) and (39) and solve the resulting equations along with (40), (41) and (42) for qf and
U. For a general case however the saturated equations seem harder to solve than the unsaturated
ones due to the greater degree of coupling present.

3.2 "Rigid Felt" Elasticity - Arbitrary Geometry
When the "rigid felt" elasticity model is used, the equations may once again be separated into those
applying in unsaturated and saturated regions.

First, consider the unsaturated version of the equations (19)-(24). Since for unsaturated flow the
air void fraction 13 is non-zero, we must have 'Vp= 0 and so from (22) we find that Dlf = O. Thus
Wi = Wf and, since we have already assumed that uf = 1, it must be the case that Ul = uf = 1.
We may now add (22) and (24); this gives 'V.T = O. The first of these two equations (as discussed
above) is degenerate, whilst the second simply gives (7f22)z = O. Since 7 is assumed to be a known
non-trivial function of "f, it must be true that (0: + f3)z = O.

Now suppose that the flow is saturated so that 13 = O. Equations (20) and (23) vanish, and
adding (22) and (24) shows that -'Vp + 'V.7f22 = O. Again, the first component of this equation
may be discarded. The equations for the rigid felt elasticity model are therefore

O:t + 'V.(o:qe) 0
f3t + 'V ·(f3qa) = 0
"ft + 'V·("(qf) = 0

(0: + f3)z = 0

(43)
(44)
(45)
(46)



\!p 0, 13>0

Ui = uf = 1, Wi = wf

Saturated:

at + \!.(aqi) = 0

"It + \!·C"/qf) = 0

13 0

-a\!p+ Dif = 0

-pz + (7f22)z = 0

(47)
(48)

(49)
(50)

(51)
(52)
(53)

The general methodology of solution is now as follows: for unsaturated regions, we exploit that fact
that (a + J3)z = 0 and wf = Wi to solve for wf. It is then normally possible to obtain a single
hyperbolic equation for one of the void fractions. For saturated flow (53) may be integrated to
determine p and thus Dif from (52). It is then sometimes possible to eliminate one of the void
fractions in favor of the other.

We shall now examine the linearly elastic problem in a thin layer, assuming that the flow is both
steady and completely saturated. We rescale the non-dimensional variables in equations (36)-(42)
according to z = tZ, U = t + f20, W = fW, Ui = 1+ f2ui, Wi = fWi, Uf = 1 + f2uf, wf = fWf and
p = rp where f = holL and

r = LJ.Liuoof2 = f2 K.
Ea2

It is worth pointing out that this is not the standard "lubrication theory" limit since perturbations
in the horizontal velocities and displacements are smaller than those in the z-direction.

Dropping the bars, we find that to leading order the equations that must be solved are

ax + (awi)z = 0 (54)

"Ix + C"/wf)z = 0 (55)

pz = -cD(a)(ui- uf) (56)

pz -cD(a)(wl - wf) (57)

Uz+wfUz = uf (58)

Wx +wfWz = wf (59)

rpx
(A + J.L) J.L

(60)= E Wzz + EUzZ

rpz = (A+2J.L)W
(61)E zz

where cD(a) = g(Rep, a)lk(a).
Using the values L "" 0.02rn, J.Li

a "" 1O-5m, we find that
r ""4 x 10-3.

When we pass to the limit r -* 0, (and additionally assume that the Lame constants A and J.L
and the drag coefficient CD are constants that are independent of a) the equations (54)-(61) are



particularly simple, and may be solved in closed form. Since in the thin layer limit only the distance
between the two rollers concerns us, we assume for simplicity that the flow takes place in the region
-1 :s x :s 1,0 :s z :s h(x) where h(x) is prescribed. (For simplicity we set ¢ = h(-I).) As far
as boundary conditions are concerned, on z = 0 we have U = W = 0 as there can be no elastic
displacement on the bottom surface. For analysis of a simple case, we also assume that p = 0 on
z = 0, which is tantamount to assuming that there is no resistance to water flow on the bottom
roller. At x = -1, where the squeezing process commences, we assume that W = 0, "f = "fo(z) where
"fo(z) is prescribed and

l¢Udz=o,

the last condition arising from the usual thin layer flow stricture which dictates that that we may
prescribe only the integral of U to be zero rather than U itself. On the top roller z = h(x), we may
apply the conditions that there is no flowof liquid normal to the roller and the felt velocity must be
the same as the roller velocity. Thus (in dimensional variables) we have

where it is the unit outward normal to the flow region, t is the unit tangent and qR is the roller
velocity. Since (in non-dimensional scaled variables) it and t are given by

. 1 ( -€hx )
n = J1 + €2h; 1 '

we find that, to leading order on z = h(x) we have

h2

uf + ; = O.

The solution to (54)-(61) is then easily seen to be given by

zA'
Wf=I_A'

¢
A = 1--,

h

h' - "fWf
Wi = ,a 1%W h'

P = CD f - dz.
o a

The horizontal displacement U is given by

U = -A' C\: JL) z; + Bz,

141
U(-I,z)dz = o.

Px
Ui = Uf --.

CD



Evidently many illustrative cases may be considered; we examine only the case where h(x) =
1 + x2 (a "locally circular" roller) and ,0 is taken to be a constant. Using the above solution now
gives

1+ x2
- 2'0a= 1+x2

W - ~ W _ z(x2
- 1) 2'0

f - 1 + x2 ' - 1 + x2' , = 1 + x2 '

CDZX(Z - 2 - 2x2) 2x((1 + X2)2 - 2z,o)
p- Wi-

- 1 + x2 - 2'0' - (1 + x2)(1 + x2 - 2'0)

2z((-\ + J.L)(1 - z) + -\x2 - J.LX4)

uf= J.L(1+x2)2 ,

2z((1 + x2)(-\ - J.LX3) + 3x(-\ + J.L)(x2 + 1- z))
U = ------------------,

3J.L(1 + X2)2

,S(8(-\ + J.L)(1 - z) + 8x2(-\ - J.LX2))
Ui = J.L(1+ x2 - 2'0)2(1 + x2)2

2'0(1 + x2)[4-\(1 + x2 - z) + J.L(2x4 - zx2 + 8x2
- 5z + 6)]--------------------+

J.L(1+ x2 - 2'0)2(1 + X2)2

(1+ x2?[2-\(1 + x2 - z) + J.L(4+ 4x2 + zx2 - 3z)]
J.L(1+ x2 - 2'0)2(1 + x2)2

Figure 4 shows plots of various components of the solution derived above; values of CD = 1 and
,0 = 4/10 were used. In figure 4(a) pressure contours are shown for the values p = 3..(-0.5) .. - 3.
As expected, the pressure is highest at the entry to the nip region and lowest at the exit. Pressure
plots are shown in figure 4(b). These display the expected behavior in that for fixed z the pressure
decreases as the nip point is passed. In figure 4(c) contours of the liquid velocity Wi (for the values
Wi = 3..(-0.5) .. - 3) are shown. Water is expelled from the felt in x < 0, whilst for x > 0 the felt
sucks water back in again. Finally, figure 4(d) shows plots of the felt velocity wf for three values of
z. As we expect, large values of z give rise to larger felt velocities.

A number of interesting points arise from the solution given above:

• We note that if '0 exceeds 1/2 some components of the solution inevitably possess singularities;
this is to be expected because the "compression ratio" (the ratio of the minimum channel width
to the maximum channel width) in this example is 1/2. Since we impose W = 0 on z = 0 it is
not possible to compress the felt beyond the point where it completely fills the channel.

• The elasticity constants -\ and J.Lonly enter explicitly into U, uf and Ui. This is to be expected
as effect of including elasticity is to modify the smaller order (viz horizontal) speeds.

• If the initial void fraction is assumed to be uniform across the felt, then the void fractions
remain uniform throughout compression and are functions of x alone.

• The drag coefficient CD enters only into the pressure; this is evident as the drag may obviously
be scaled out of this leading-order thin layer problem by simply scaling the pressure.

• The pressure cannot be made to satisfy p = 0 at x = ±1.

The last item discussed above is not unexpected; in the limit as r -t 0 a p-derivative is lost in
each of (60) and (61) and we might therefore anticipate that the pressure exhibits boundary layer
behavior near to the edges of the nip press region. This may be confirmed by resealing (54)-(61)
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according to x = -l+fx, Uj = (l/f)uj, ue = (l/f)ue and W = fW. The boundary layer equations
then become

o:(z)
,(z)
-CD(Ue - Uj)

-CD(We - wI)

ul
wI
(..\+ J.L) - J.L

E Wzi + EUzZ

(..\+ 2J.L)W-
E zz·

(62)
(63)
(64)
(65)
(66)

(67)

(68)

0:, =
Pi
pz =
Ui =
Wi =

A(x) - (1 - O:O)Wj
We = -------.

0:0

Physically, the boundary layer scalings tell us that (as we already knew from the outer solution)
vertical displacements in the felt are small near the edges of the nip region. They also tell us that, to
allow the pressure to "adjust" , the horizontal liquid and felt velocities must be an order of magnitude
greater than they are under most of the roller.

The boundary layer problem (62)-(69) may in fact be solved for general h(x): here we simply
determine the solution for the example that we examined previously where h(x) = 1 + x2• In this
case we have hx = 2x = -2 + O(f). Imposing the necessary

boundary condition on the roller now gives that, to leading order in the boundary layer, A(x) =
-2. Eliminating pz between (65) and (69) now gives

Wzz = _ (~) (-2 - Wi)..\+ 2J.L 0:0

0:0(.-\ + 2J.L)"'=----
ECD

we find that W must satisfy the parabolic boundary value problem

W = -xz + .!. (_ z3 + z2 _ 4Z) + ~ _1_6_ exp ( __xn_2_1r_2_",)sin (_n1r_Z) ,
'" 6 3 ~ n

3
1r

3
", 4 2n=l

_ (..\+ 2J.L) W- Q(-)
P- E z+ x



we simply have to determine Q(x) so that p = 0 at x = 0 and z = O. Doing this, we find that in the
boundary layer the pressure is given by

_ (A + 2p) (_ z2 2) ~ 8(A + 2p) (_ xn27r2K,) [ (n7rz) _ ]
p - E 2 + Z + L.-t 2 2 E exp 4 cos 1 .K, 7rnK, 2

n=l

(A + 2p)
p -+ ---z(4 - z)

2EK,

which agrees exactly with the inner limit of the outer solution, confirming that matching is automatic
and the pressure can be made to behave in the correct fashion. An almost identical procedure may
be also carried out to ensure that p = 0 at x = 1.

4.1 Linear Elasticity, Thin Layer Geometry, "Small Elastic Advection"
limit

One other limit of the linear elasticity thin layer model in which great simplifications may be made
occurs when we (somewhat arbitrarily) set the nonlinear terms in (58) and (59) equal to zero. We
refer to this as the "limit of small elastic advection". Obvious simplifications may now we made and
it is found that W satisfies a diffusion equation. This part of the problem decouples, and once W
has been determined the rest of the solution may be recovered. This particular strain of analysis is
more interesting when the Ergun rather than the Darcy law is used for the drag; although we omit
the details in the present study, it may be shown that now W obeys a nonlinear diffusion equation.

Evidently there is much mileage in the linear elasticity problem. It is also possible to analyze
cases where the flowis not saturated everywhereand a saturation free boundary must be determined.
We do not pursue any further cases using the linear elasticity submodel in this report, however.

5 "Rigid Felt" Elasticity - Thin Layer Geometry
Although the results of section 4 are instructive, there is quite a lot of experimental evidence to
suggest that the felt does not, in reality, behave in a linearly elastic fashion. Therefore we now turn
our attention to the previously-posed rigid felt elasticity model in the thin layer limit. We again
rescale according to

It is now necessary to consider carefully the boundary condition on the bottom roller, which
we take to be at z = O. (Once again, since we are examining the thin layer limit, it is merely the
distance between the rollers that is important, so it is convenient to assume that the bottom roller
is at z = 0.) Much discussion took place at the meeting concerning the prescription of realistic
boundary conditions on z = O. Simply putting p = 0 there (no resistance to flow) allows water to be
sucked back into the felt after it has been expelled, and it is likely that water that enters the bottom
roller is, in reality, removed very quickly from the system. Our general impression was that before
the nip point is reached water was expelled, whilst after the nip point mainly air was sucked back
into the felt. Some experimentation with the mathematical model also showed that, depending on
the pressure boundary condition that is imposed on the bottom roller, many different free boundary
problems may arise. Clearly this is a facet of the problem that would benefit from a great deal of
further discussion.



5.1 "Rigid Felt" Elasticity - Thin Layer Geometry - "Simplest" Problem
- Theory

As we have seen, there are many ways in which the rigid felt/thin layer model may be proposed; the
main difference between each of these amounts to what we specify on the bottom roller. Perhaps
the simplest of these problems may be posed as follows: we assume steady flow as usual and also
that the bottom roller is flat, and that exactly at the 'nip' point (i.e. under the minimum of the top
roller) the bottom of the felt is exposed to air, which can enter the pores of the felt if it is able. As
far as the flow of water into the bottom roller is concerned, we assume that there is some resistance
(characterized by a non-dimensional parameter >.) to flowout of the felt into the bottom roller, the
(non-dimensional) boundary condition at z = 0 being

Evidently, when >. -t 0 the flow of the liquid into the bottom roller is uninhibited, whilst when
>. -t 00 no water can be squeezed out of the felt: of course, we hope that beyond the nip point the
water content of the felt will be reduced. Figure 5 shows a schematic diagram of the flow that we
wish to consider in detail; the regions indicated will be further explained below.

5.1.1 Flow in region 1:

We begin by considering the region x < Xi that is labelled 1 in the diagram. In this region, h = hi

say, and no deformation of the felt has yet taken place. The flow is unsaturated so that equations
(43)-(48) apply and the pressure p is zero. We shall assume here that the vertical components of
each of the phasic velocities is zero, (so that the felt does not "drip") and that the void fractions are
all constant, though clearly it would possible for a and /3 (but not 'Y) to be non-trivial functions of
z. The felt is assumed to be in elastic equilibrium, so that 7/22 = 0 and thus (from figure 3) 'Y = 'Yi,
and the pressure, being zero at z = 0, is thus zero everywhere. The void fractions ai and /3i are
assumed to be given. In region 1, therefore, the solution is

5.1.2 Flow in region 2:

In region 2 the flow is still unsaturated but now the velocities and void fractions begin to change.
Scaling the variables according to (70) we still have

a", + (awih = 0
'Y",+('Ywlh = o.

As far as the boundary conditions are concerned, on z = 0 we have Wi = WI = 0, whilst on z = h
we have, to leading order, Wi = WI = h",. First, we use (71), which, since (a + /3h = 0, gives

_ z(a+/3)", _
WI = = Wi·1-0-/3
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Figure 5: Schematic diagram of roll press nip for rigid felt elasticity model (U denotes unsaturated
regions, S denotes saturated regions)



We may now set z = hand wf = h' in (72). Integrating with respect to x, we find that

h(l - a - (3) = constant,

and since when h = hi we have a = ai, /3 = /3i, we find that

- hi(l - ai -/3i)h=-----.
1-a-/3

If we now use the fact that az = 0 (this is not immediately obvious, but if we note that a satisfies
the conservation law ax + [azq'(x)Jz = 0 for some q(x), and that a = ao = constant on x = Xi, then
it is easy to see that a = ao exp( -q(x) + q(Xi)) and a must therefore be a function of X alone) then
we may use that fact that Wl = wf to see that

ax + (awf),;; = O.

Integrating with respect to z and using fact that wf = 0 on z = 0, we find that zax + aWf = O.
Now using the boundary condition for wf on z = h and the initial conditions on x = Xi gives

hi/3= 1 - ~(1 -/3i)'
h

The solution in region 2 is now completely determined; we note that no water is lost from the felt
and only air is squeezed out (this is essentially a consequence of the drag laws that were adopted).
Since wa = h' on z = h, we have

- (h - z)/3x h'
Wa = /3 +

and thus the speed wao of the air lost on the lower boundary is given by

h'h
WaO = ------.

(h - hi(l -/3i))

Most importantly, however, we now know where region 2 ends, for from (74) we see that when x
is such that h = hi (1 - /3i) (at x = Xl, say), the air fraction /3 reaches zero and so the flow becomes
saturated.

5.1.3 Flow in region 3:

As we have seen, in X ~ Xl the flow is saturated and a different set of thin layer equations apply. In
non-dimensional unsealed variables the general equations are

at + \7.(aql) = 0
"It + \7 .("fqf) = 0

/3 = 0
Kag

0-a\7p - -k-(ql - qf) =
-pz + (7f22)z O.

(75)
(76)

(77)

(78)

We now use the thin layer scalings (70). To leading order, (75) and (76) become

ax + (awL),;; = 0

(1- a)x + ((1- a)wf),;; 0



K€2g(Rep, a) g(Rep,a)
CD = rk(a) = k(a)

and once again for simplicity we assume that CD is constant.
Next, we note that on z = 0 we have Wj = 0 and

Now we may use (80) and pz = -CD(Wl - Wj) to show that

- CD (- h-/)pz = --- Wl-
I-a

CD -
(fj22h + -1-(Wl - hi) = O.

-a

Finally, Wl may be eliminated between (79) and (82) to yield a single equation for a. The nonlinear
convection-diffusion equation that applies in region 3 is therefore

h __ [a(fj22h(1 - a)] - 0az + zaz ------ -.
CD z

Two points of interest arise concerning the solution of (83) in region 3. First, the equation
requires one initial and two boundary conditions. These are given respectively by

az(x, h(x)) = 0, a(fj22h = -cDh' on Z = O.

(The first boundary condition may be obtained by noting that Wl = hi on z = h and thus from (82)
we have (fj22h = 0 which is only possible in general if az = 0; to derive the second we note that
Wj = 0 on z = 0 and so, from (80), we have aWL = hi which may be combined with (82).)



Second, we note that, unlike regions 1 and 2, we do not know where region 3 ends and it is not
clear how far into x > 0 (83) should be solved. Since in region 3 we have

h'A
15 = 7/22 - - - (7/22) Iz=oa

we know that 15 reaches zero on Z = 0 when h' = 0, i.e. at the "nip". Since for x < 0 the pressure 15
is evidently positive, a free boundary on which 15 = 0 thus extends into x > 0 as shown in figure 5.
Although this free boundary (which we shall denote in non-dimensional scaled variables by z = ((x))
has yet to be determined, we know that on it 15 = 0, and also that Wi, WI and a are continuous
across it into region 3a.

5.1.4 Flow in region 3a:

In region 3a the flow is once again unsaturated, since for x > 0 air is sucked into region 3a from the
bottom boundary z = O. We note first that, by (46),

')'(x)=l-a-,8,

is a function of x alone. As usual for unsaturated flow, we also have wI = Wi, and the thin layer
version of the felt conservation of mass equation is

_ _ z')"(x)
wI =Wi = ---.

')'(x)

1 ( z )
a = if ')'(x) ,

where the function f is, as yet, unknown. However,since on the boundary z = ((x) of the saturated
region we have ,8 = 0 and therefore a = 1 - ')'(x), we see that f is defined implicitly by

We must be sure to interpret (84) in the right way: as yet no complete problem to determine
((x) has been determined, and thus neither ')'(x) nor «(x) are available for use in (84). We may
speedily repair this omission, however: since Wi and wI are equal in region 3a and continuous across
z = ((x) it must be the case that Wi = WI on z = ((x). Thus, from (81), 15z = 0 here, and so, from
(78), (7/22).. is zero on the free boundary. Thus -



Evidently one more condition is required to determine ((x): from (80) we have

aWl + (1- a)wf = h',

and so since Wi = wf on z = ((x), it must be the case that

Wi = wf = h' on z = ((x).

_ z')"(x)
Wl=---

')'(x)

and so, combining (85) and (86) we find that, on the free boundary,

h
- __ (')"(x)
x - ')'(x)·

Since {3= 0 on the free boundary we have

(1 - a)h' = ((ax + ('az).

As we have already seen, az = 0 when z = ((x). The final condition that determines the free
boundary is thus

(1 - a)h' = (ax.

We may now summarize: In region 3 we solve the well-posed problem

h - - [a(ff22h(1- a)] - 0ax + xaz ------ -
CD z

a·
a(xl'z) = 1-'{3i' az(x,h(x» = 0,

a(ff22h = -cDh' on Z = 0

az(x, ((x» = 0, (1 - a(x, ((x)))h' = (ax (x, ((x»

to determine a and ((x). This yields ')'(x), and, with ((x) known, (84) may now be used to determine
f and thus the complete solution in region 3a. It is worth pointing out that to determine the solution
in region 3a, it is of course necessary that (84) possesses a unique solution. Although it seems at
least plausible that this may be the case, there seems to be no a priori guarantee that this state of
affairs does indeed prevail. Clearly more work is required on this aspect of the problem.

5.1.5 Flow in region 4:

The solution in region 3a is valid only until the free boundary hits the top roller. Let us assume
that this happens at x = xs, so that ((xs) = h(xs), and that at this point a = asCz). Region 4 is
unsaturated, and its only role is to allow air to re-enter the gaps that have been left by the water
that has been squeezed out. The thin layer versions of (43)-(48) apply. From (46) we have

_ _ z')"(x)
wl=wf=---

')'(x)



in the same way that they did in region 3a. As before, since wI = 11,1 on Z = 11" we find from (87)
that '711, is constant. Region 4 ends at the point where the felt returns to its original unstressed
condition and hence '7 = '7i and 7/22 = O. Therefore

11,1(1 - ai - /3i)
'7 = h '

where 11,1 is the final total felt thickness, which in this case is simply hi- Conservation of mass for
the liquid now yields the hyperbolic equation

_ (Z'7'(x)a) = 0ax ( ) .'7 x z

_ h(xs) (Zh(Xs))
a - h(x) as h(x) .

5.1.6 Flow in region 5:

In region 5 the flow is again unsaturated and no air or water either leaves or enters the felt, which
has returned to an equilibrium state. We have 11, = hi and we may read offao and /30' the respective
outgoing liquid and air void fractions. We find that

/3 - . /3. _ h(xs) (Zh(Xs))o - a. +. - as - .
hi hi

We also have p = 0, ue = Ua = ul = 1 and We = wa = wI = O. In this case, the felt returns to an
unstressed state after its passage through the roller, and thus 11,1 = hi and once again 7/22 = 0 and
'7 = '7i as per figure 3. By considering examples where the felt entered the roller with a non-zero
stress, it would be possible to examines cases where the final and initial total felt thicknesses were
not the same.

5.2 "Rigid Felt" Elasticity - Thin LayerGeometry - "Simplest" Problem
- Example

We now discuss numerical methods and example calculations based on the theory detailed in section
5.1. The aim in this discussion is to first outline numerical methods designed to solve the various
equations without making specific choices for the various parameters involved, such as the roller
shape and elastic properties of the felt. In this way, the numerical method may be used to perform
"numerical experiments" for a wide range of choices for the parameters within the theory. For the
purpose of illustration, we will use the numerical methods for an example calculation assuming some
simple choices for the various parameters involved.

A numerical method of solution is needed to solve the convection-diffusionequation for a in region
3 and to find the saturation boundary, Z = «(x), that separates regions 3 and 3a. Explicit formulas
for a are available for the other regions, although for regions 3a, 4, and 5 the formulas rely on the
numerical solution found in region 3. Once a is known, then other quantities such as the pressure
p, the fractions /3and '7, or the vertical velocities We and WI can be worked out as well.



We begin with a discussion of the numerical treatment of the equations for region 3. In this
region, Ct evolves according to the convection-diffusionequation given in (83) for x > Xl. An initial
condition is given at X = Xl and boundary condition are given on Z = 0 and z = h(x) for Xl < X < 0
and on z = ((x) and z = h(x) for 0 < X < XS• Because the boundary conditions are given on curves,
it is convenient to use the change of variable

so that z E [b(x), h(x)] becomes the fixed interval y E [0,1]. For our boundary-value problem, b(x)
is taken to be 0 for Xl < X < 0 and ((x) for 0 < X < xs. In terms of the independent variables
(x, y), the governing equation becomes

( ) _ 1 [Ct(l - Ct)(ff22)Y]
Ctx + v X, Y Cty - (h _ b)2 CD y'

where f[22 = f[22 (1 - Ct) and CD = CD(Ct), and

h'(x) - b'(x)
v(x,y)=(l-y) h(x)-b(x).

Cti
Ct= --

I - Pi
is unchanged, while the boundary conditions become

Ct
y = 0 } on y = 0 for 0 < X < Xs(1- Ct)h' = (Ctx

and Cty = 0 on y = 1 for both intervals of x.
Let us first consider a numerical formulation of the problem for Xl < X < O. For the interval

y E [0,1] we use a uniform grid

for a chosen integer n and let Ctj(x) approximate the exact solution on the grid. A cell-centered grid
is used to facilitate the difference approximations of derivatives at the boundaries. Using central
differencing for the diffusive term and upwind differencing (v < 0) for the convective term, (89)
(with b = 0) becomes

d ()8+Ctj 8+ [Ctj-l/2(1-Ctj-l/2)8_ff22(1-Ctj)]
-Ct· + v X y. -- - --- -------------
dx J 'J ~y - (h~y)2 CD(Ctj-l/2)

Ctj-l/2 = HCtj + Ctj-d

and 8+ and 8_ are forward and backward difference operators, respectively, defined by



We may regard these difference equations as a system of ordinary differential equations (ODEs)
which take the form

d
dx a + C(x, a) = D(x, a),

where a = (01, ... ,0n)T and C and D denote the contributions from the convective and diffusive
terms in (90), respectively. A first-order integration of these ODEs is

a(x + ~x) - a(x)
~x + C(x, a(x)) = D(x + ~x, a(x + ~x)),

for stability. The stability constraint is the usual CFL condition as given by the upwind differencing
of the convective terms. The diffusive terms are handled implicitly in (91) and give no constraint on
the choice of ~x. Newton's method can be used to solve the nonlinear algebraic equations in (91)
in order to advance a from x to x + ~x.

The numerical formulation of the problem for 0 < x < Xs is similar to that for Xl < X < 0 but
must now include a numerical treatment of the saturation boundary z = ((x). For this interval of
x, we take b = ((x) in (89) and use the finite difference formulation

d () 0+OJ 0+ [OJ-l/2 (1 - OJ-l/2)L 7/22(1 - OJ)]
-OJ + v x,Yj -- = ----- -------------
dx ~Y ((h - ()~y)2 CD(Oj-l/2)

- - d
(1 - odh' = ( dx 01

The first two of these boundary conditions along with the differenceequations in (92) imply a system
of ODEs that take the form

d
dx a + C(x, a) = D(x, a),

where C and D now involve the unknown function ( (and its derivative). The third boundary
condition provides an additional constraint needed to determine (numerically. It is convenient to
regard (' as an additional unknown and solve

a(x + ~x) - a(x)
~x + C(x + ~x,a(x)) = D(x + ~x,a(x + ~x)),

- - al(x + ~x) - al(x)
(1- Ol(X + ~x))h'(x + ~x) = ((x + ~x) ~x

('(x + ~x) = ((x + ~x) - ((x)
~x

for {a, (, ('} at x + ~x in terms of {a, (} at x using Newton's method. Initial values for these
equations are a(O) and ( = 0, where a(O) is the final numerical solution from the previous interval.
The value for ~x is chosen to satisfy

for stability. Here we note that (' becomes large as x tends to Xs so that ~x approaches O. In fact
the "time" stepping in x never quite reaches the exact value of Xs' Instead we assign Xs to be the
value of x when h( x) - ((x) first becomes less than a chosen tolerance which is taken to be 10-4•



The numerical solution in region 3 givesdiscrete values for a(x, z) along the saturation boundary
z = ((x) (y = 0). These values provide the necessary information needed to continue the numerical
solution for a(x, z) into region 3a and then into regions 4 and 5. The solution in region 3a is given
by (84), where the function f can be found using the discrete values of a(x, z) along the saturation
boundary. Values for a at x = Xs from the solution in region 3a specify the function as in (88)
which gives the solution for a(x, z) in regions 4 and 5, respectively.

5.2.2 Example calculations

In order to illustrate the numerical methods we now make some choices for the various parameters
in the system. We begin with geometry and define the upper roller shape to be hex) = 1/2 + 2x2.
(The lower roller, as usual, is assumed to be flat and situated on z = 0.) For this choice, the "nip"
point is x = 0 at which point h = 1/2. Next, we consider the incoming state of the three phase
air-liquid-felt system. We assume that the incoming felt has a non-dimensional scaled height of 1
and thus it first touches the upper roller at x = Xi = -1/2. The incoming fraction of air is taken to
be {3i= 1/4 while the incoming fraction of water given by ai will be allowed to vary to study the
behavior of the system. Thus, the incoming fraction of felt is /i = 1 - ai - (3i= 3/4 - ai. Finally,
we need to make assumptions regarding the flow through the felt and its elastic properties. The
coefficient of drag is taken to be 1 and thus a Darcy flow through the felt is assumed. The elastic
behavior of the felt is given by 7/22 as shown qualitatively by the curve in figure 3. Near / = /i we
may approximate the curve using

7/22 = O'(-yi -,)

where 0' is a positive constant. Away from /i we expect a deviation from this linear fit, but we will
accept this approximation for all values of / for the purposes of our illustrative example.

The uniform incoming state from region 1 provides starting information for the solution in region
2. Using the formulas in Section 5.1.2 and the choicesfor hex) and the incoming fractions of air and
water given above, we find

ai
a = 1/2 + 2x2'

3/4
(3 = 1 - 1/2 + 2x2'

3/4 - ai
/ = 1/2 + 2x2

_ _ 4xz 8x(1 + 8x2 - 3z + 16x4)

w/=w/=1/2+2x2' Wa= (1+4x2)(-1+8x2) p=o

These formulas apply for -1/2:5 x :5 Xl, where Xl = -1/../8 is the value of X when (3 = 0 and the
felt becomes saturated. At this point, the fractions of water and felt are

4ai
/1 = 1--

3

which are greater than their incoming values.
The solution in region 3 uses the numerical approach outlined previously. For a choice of ai and

0' we may solve the finite differenceequations for a from x = Xl to 0 and then from X = 0 to X = xs•

For the latter interval, we also obtain points on the saturation boundary z = ((x).
Figure 6 shows contours of the fraction of water in the saturated region for the choice ai = 0.5

and 0' = 1.0. The color bar to the right of the figure indicates the value for a on each contour. The
interval in a between contour lines is 0.01. The black curve at the top of the figure gives the shape
of the roller and the dashed curves to the left and right mark the boundaries of the saturated region,
and in particular the dashed curve to the right is the free boundary z = ((x). As expected the
maximum fraction of water occurs at the left saturation boundary, where a .= al = 2/3. For x > Xl,

water is squeezed out of the saturated felt so that a decreases with increasing x, at least initially.
Near the roller, z = hex), diffusion dominates and the fraction of water decreases monotonically.
Near the flat surface z = 0 there is a rapid decrease in a followed by a gentler increase towards
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the nip, x = O. The initial decrease is in response to the geometric convergence of the roller. As
the slope of the roller approaches zero near the nip, this convergence eases while diffusion tends to
equilibrate the water content which causes a to increase along z = O.

Figures 7(a) and (b) give contours of a for the cases ai = 0.5, (j = 2.0 and ai = 0.4, (j = 2.0,
respectively. The effect of changing the rigidity of the felt can be seen by comparing the solutions
in Figures 6 and 7(a). A larger value of (j models a more rigid felt which, as seen in Figure 7(a),
results in a smaller reduction in a near z = O. The effect of decreasing ai and thus decreasing al
can be seen by comparing the solutions in Figures 7(a) and (b). The solution in Figure 7(b) shows
a significant reduction in the minimum value of a along z = O. In fact numerical experiments with
even smaller values of ai (holding (j fixed) indicate that it is possible for this minimum to become
zero implying that all water has been squeezed out of the felt at that point. The mathematical model
(and numerical method) would require modification to continue the solution beyond that point.

The liquid and felt velocities, WI and wf, respectively, can be worked out from a(x, z) in region
3 using (82) and (80). These velocities are shown in Figure 8 for the case ai = 0.5 and (j = 1.0. The
liquid velocity has a minimum along z = 0 where the water is leaving the felt most rapidly. The felt
velocity is constrained to be zero along z = O. On the roller, both WI and wf are equal to Mx) in
accordance with the boundary condition there.

Once the velocities are determined, the pressure in the saturated region can be found by inte-
grating (81) numerically from z = 0 to z = h(x) for fixed x. The boundary condition jj = -AWL at
z = 0 provides the necessary information to begin the integration. Figure 9 shows the pressure for
the case ai = 0.5, (j = 1.0, and A = O. For this choice of A, the pressure is zero along z = 0 which
matches the value at the saturation boundaries.

Finally, we show the behavior of a for the entire interval -1/2 ::; x ::;1/2 in Figure 10 for the
case ai = 0.5 and (j = 1.0. This plot shows the behavior of the a in the unsaturated regions prior
to and following the saturated region 3. Of particular interest in the plot is the fraction of liquid at
x = 1/2, which is approximately 0.277, a value significantly less than the incoming value of 0.5.
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Figure 8: Vertical velocities in the saturated region for D:i = 0.5 and a = 1: (a) liquid velocity and
(b) felt velocity
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We have proposed a three-phase flow model for the flow under a roll press nip. The three phases
are air, water and a deformable porous medium that may be considered to be either the paper or
the felt. The model has been proposed initially in some generality, before specific assumptions have
been made to reduce the complexity of the working equations. We have examined a case where
the felt is assumed to obey the laws of linear elasticity, and have shown that for certain restricted
scenarios a complete closed-form solution is available.

As an alternative to assuming that linear elasticity applies, wealso examined a case where a "rigid
felt" model was proposed. In effect, this assumes that the felt is compressible only in one direction.
Such behavior is suggested by experimental results. The rigid felt model produces equations that
are particularly amenable to further study: if use is also made of the fact that thin layer theory
applies in the gap underneath the roller, then a great deal of theoretical progress may be made: at
the very least, the numerical calculations that must be performed turn out to be much simpler than
those that would be required if the full system was solved. We were also able to follow the theory
through for a simple example, showingthe kind of water reductions that could be expected for given
parameters.

Although it seems clear that we have now proposed a coherent theoretical model for the process
of flow under a roll press nip, much work remains to be carried out. The following further areas of
study suggest themselves:

• A careful literature survey should be carried out to determine how this model relates to previous
models appearing in published literature.

• More information and comparisons should be carried out regarding the various submodels that
appear within the model. Particular attention should be given to the areas of the constitutive
law of the felt and the drag laws satisfied by the water and the air.

• More attention should be given to the boundary conditions that are satisfied on the bottom
roller. In particular, we need to know the circumstances under which air may be sucked into
the felt and how easily fluid may be removed by the bottom roller.

• More information is required concerning the state of the water-loaded felt as it approaches a
roller.
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