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Executive Summary

A rotating disk apparatus is commonly used to study kinetics of heteroge-
neous reactions such as calcite dissolution by acid. The apparatus consists of
a rock disk attached to a rotating shaft; the rock is submerged in a solution
of reactant which is transferred to the disk surface by convection and molec-
ular diffusion. The former due to the rotation of the disk, and the latter due
to the concentration gradient of the reactant between the bulk fluid and the
rock surface.

Schlumberger is interested in determining how to use the rotating disk ex-
periments to extract parameters that govern the reaction rate between the
acid and carbonate rock. For mass transfer limited reactions these include
(i) the diffusion rate across the boundary layer, and (ii) the thickness of the
boundary layer. For a reaction that is surface limited, (i) the reaction rate
and, (ii) the reaction order are of paramount interest.

The Study Group began by reanalyzing the solution by Levitch coupled with
numerical solutions of the flow in the hope that it would lead to a deeper
understanding of the fluid dynamics in the neighbourhood of the rock. In
particular, how the fluid flow changes as the Reynolds number is increased
and how this might indicate the most ideal location to measure the calcium
in the reaction vessel.

The modelling looked not only at the coupling of the fluid flow with the
diffusion equation for the ions but also a preliminary Stefan problem for the
dissolving rock.
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1 Introduction

The rotating disk apparatus, as illustrated in Figure 1, is widely used in the
petroleum industry to study the kinetics of heterogeneous reactions such as in-
terfacial calcium carbonate dissolution by acid. A review of the experimental use of
this device can be found in [5]. The system allows for the determination of the re-
action rate, the diffusion coefficient associated with the dissolution and the order of
the reaction [1, 2, 3, 9]. In practice, a carbonate rock disk is attached to a rotating
shaft, and submerged in a solution of reactant (typically strong acid). The reactant
is transferred to the rock surface by both convection and molecular diffusion with
the overall reaction rate governed by the slower of these two processes. Much of
the theory is originally due to Levitch [4], with a refinement for a large Schmidt1

number [6], Sc, a few years later. One of the current difficulties is the significant
variability in the acid reaction rate data found in reservoir rocks which is attributed
to a wide variation in experimental procedure [7, 8].

In [8] a few additional factors that could lead to variations in measured results
were considered. (a) As the reaction progressed the apparent dissolution rate in-
creases due to the increase in surface area. This effect is more likely when using
strong acids or elevated temperatures. (b) Highly porous rocks will indicate a more
rapid dissolution rate due to the increase in surface area but in this case the laminar
flow assumed on the surface of the rock may no longer be valid. (c) Clay impuri-
ties in the rock are capable of slowing the dissolution rate to as much as 25 times.
Therefore some detailed mineralogy of the reservoir rock is required. (d) Acidizing
additives can also have a significant effect on the observed dissolution rate.

Some of the objectives that this report will address include: (i) an evaluation
of the Reynolds number effects; (ii) determination of the motion of the fluid; (iii)
consideration of the concentration profile and (iv) an indication of how to extract
parameters that govern the reaction rate of the dissolution process.

1.1 Experimental setup

For the experiment detailed to the Study Group, a cylindrical pellet of calcium
carbonate rock, approximately 1/4 inch thick, was attached to a metal mount and
submerged in the reaction vessel prior to the introduction of the reactant. A one
inch gap is maintained between the surface of the fluid and the top of the reaction
vessel and a pressure of 1000 psi is maintained above the fluid to keep the gaseous
by-products (carbon dioxide) in solution [3]. The reactant, 1 litre of 4.4 M HCl, is
injected over a period of about 30 seconds at a pressure of 3000 psi to create the
1000 psi. This occurs while the rock is spun up to the desired speed. At this time,
samples are taken every minute and the concentrations of both H+ and Ca2+ ions
are recorded. An example of the recorded data is shown in Figure 2.

The reactant reaching the (bottom) rock surface is consumed by chemical in-
teraction, and Schlumberger are interested in quantifying the flux R (material per

1The Schmidt number Sc = µ
ρD0

relates the relative thickness of the hydrodynamic layer and
mass-transfer boundary layer.
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Figure 1: Experimental setup showing (i) the pump that injects concentrated acid, (ii) the
rotating rock with shrink wrap exposing only the lower surface to the reactant and (iii) the
sampling apparatus.

Figure 2: Experimental measurements of the hydrogen and calcium ion concentrations as a
function of time in seconds.

unit area per time) of this reaction which takes the form2 for a reaction order of
n = 1 of

R = 0.62D2/3ν−1/6ω1/2(cb − c0) (1)

where R is the flux from the disk surface, D is the diffusion coefficient of the solute
in the solvent, ν = µ/ρ is the kinematic viscosity, ω is the angular velocity of
rotation and cb, c0 are the concentrations of solute in the bulk and at the disk
surface respectively [4].

1.2 Schematic of flow

Measurements of the calcium concentration are taken soon after the acid is injected,
without waiting for any possible transients in the ion concentrations to dissipate.
In addition to this, samples from the reaction vessel were taken near the bottom of
the reaction vessel against the outside wall where one would expect a recirculation
cell in the fluid. Setting aside these issues, the motion of the fluid is driven by the

2For a general reaction order n, the industrial participant reports a generalized expression of

R = Φ(n)D2/3ν−
1

3(1+n)R
1−n

3(1+n)

d ω
1

1+n (cb − c0) where Rd is the radius of the pellet and Φ(n) is a
constant dependent upon n.
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Figure 3: Schematic of the expected flow streamlines and the induced circulation of calcium ions.
However, in the actual apparatus the pipes for injection and sampling disturb the axisymmetry
of the flow.

spinning action of the submerged disk and in response to this motion, fluid near
the disk is thrown out to the sidewall. This flow will not be axisymmetric in the
flow vessel shown in Figure 1.

There is an extensive body of literature dealing with the axisymmetric flows
produced by spinning disks beginning with the work of von Kármán [10] and con-
tinuing to the present [11, 12, 13]. Since the disk is submerged and is some distance
from the sidewalls of the reaction vessel, it is not clear if there is a steady solution
in the time frame of the experiment (5 minutes, sampling every 1 minute). Indeed,
measurements in the lab have shown that occasionally [Ca2+] decreases with time.
This may be due to the location of where the [Ca2+] is sampled. Currently this is
at the bottom of the reaction vessel adjacent to the outside wall where one might
expect a circulation cell in the flow. If the sampling point is within such a cell
then the measurement will not be a true determination of what is occurring at the
dissolution front. One of the questions that should be considered is to identify the
best point to sample [Ca2+].

Inside the reaction vessel the apparatus for sampling the fluid and injecting the
reactant may complicate the structure of the flow. However, all that matters for
dissolving the rock is the availability of H+ ions through the reaction

2H+ + CaCO3(s) 
 Ca2+ + CO2(g) + H2O.

If the limiting step in the dissolution is mass transfer from the rock into the solution,
or the supply of hydrogen ions from the solution to the rock, then increasing the
rotation speed ω would increase this mass transfer and increase the overall reaction
rate. On the other hand, if the mass transfer rate exceeds the rock consumption rate
then the dissolution becomes surface-reaction limited and the overall reaction rate
then becomes independent of ω giving a schematic behaviour as shown in Figure 4.

A final point of concern is the effect of the bounding shrink wrap on the rock
pellet. As the rock erodes, the boundary layer can become trapped by the nonre-
active lip at the edge of the disk. This has the possibility of significantly changing
the dynamics of the dissolution in the later stages of an experiment.
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Figure 4: Schematic of the reaction rate as a function of the disk rotation speed.

2 Chemistry

2.1 The carbonic acid system

As the calcium carbonate is eaten away from the rock it injects carbonate ions
into solution which react with the carbonate already present in solution due to the
high pressure dissolving carbon dioxide into the solution. It is helpful to carefully
quantify this chemistry before a more ambitious model is attempted.

We begin with the basic carbonic acid system where CO2(g) dissolves in water
to its aqueous form CO2(aq) and the subsequent formation of carbonic acid. The
carbonic acid decomposes into bicarbonate HCO−3 (aq) and carbonate CO2−

3 (aq) ions
depending upon the pH of the solution. The equilibrium system is the following

CO2(g) + H2O 
 CO2(aq) + H2O, K0 =
[CO2(tot)]

P (CO2)
, (2a)

H2CO3(aq) � H+(aq) + HCO−3 (aq), Ka1 =
[H+][HCO−3 ]

[CO2(tot)]
, (2b)

HCO−3 (aq) � H+(aq) + CO2−
3 (aq), Ka2 =

[H+][CO2−
3 ]

[HCO−3 ]
, (2c)

H2O � H+(aq) + OH−(aq), Kw = [H+][OH−], (2d)

where the notation [·] denotes the concentration of a particular quantity in moles/litre
and P (·) denotes the partial pressure measured in atmospheres. The quantity
[CO2(tot)] denotes the concentration of the total amount of dissolved carbon diox-
ide which contains a small3 admixture of dissolved carbonic acid. Values of the

3Carbonic acid produced with the reaction CO2(aq) + H2O 
 H2CO3(aq) satisfies [H2CO3] =
Kh[CO2] where lnKh = −7.49 + 219/T . At 25o C only a small portion is converted [H2CO3] =
1.16× 10−3[CO2].
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disassociation constants are temperature dependent and given by

log10K0 = 2622.38/T + 0.0178471T − 15.5873, (3a)

log10Ka1 = −3404.71/T − 0.032786T + 14.8435, (3b)

log10Ka2 = −2902.39/T − 0.02379T + 6.4980, (3c)

lnKw = 148.9802− 13847.26/T − 23.6521 lnT, (3d)

where T is the absolute temperature [14, 15, 16, 18].
Along with these reactions are expressions for both charge and mass balance.

For charge balance, one ensures that
∑

i zici = 0 where zi and ci are respectively
the charge and concentration of species i. This reduces to the constraint that

[H+]− 2[CO2−
3 ]− [HCO−3 ]− [OH−] = 0. (4)

For the mass balance, the total dissolved inorganic carbon

F1 = [CO2(tot)] + [HCO−3 ] + [CO2−
3 ] (5)

is constant.
By combining Ka1 and Ka2 and using (5) one can determine the fractional

amounts of the acid as a function of [H+]

α0 =
1

F1

[CO2(tot)] =
[H+]2

[H+]2 +Ka1[H+] +Ka1Ka2

, (6a)

α1 =
1

F1

[HCO−3 ] =
Ka1[H+]

[H+]2 +Ka1[H+] +Ka1Ka2

, (6b)

α2 =
1

F1

[CO2−
3 ] =

Ka1Ka2

[H+]2 +Ka1[H+] +Ka1Ka2

. (6c)

To solve for [H+] as a function of P (CO2), expression (2) is taken with (4) to find
that

[H+]3 − (K0Ka1P (CO2) +Kw)[H+]− 2K0Ka1Ka2P (CO2) = 0. (7)

Figure 5 shows the concentration of H+, the solution to (7), as a function of the
partial pressure of carbon dioxide. The black circle corresponding to an air pressure
of 1 atm. At this air pressure the partial pressure of CO2 is P (CO2) = 39 Pa or
about 3.85×10−4 atm giving [H+] = 2.41×10−6 M (pH = 5.62). Equation (6) yields
α0 = 0.844, α1 = 0.156 and α2 = 3.0×10−6 for [CO2(aq)] = 1.54×10−5 M, [HCO−3 ] =
2.41 × 10−6 M and [CO2−

3 ] = 4.67 × 10−11 M. These values are reflected with the
black circles in Figure 6. The squares in Figures 5, 6 correspond to an atmospheric
pressure of 1000 psi or roughly 68 atm. In this case, [H+] = 1.99 × 10−5 M (pH =
4.70), α0 = 0.978, α1 = 0.022, α2 = 5.2 × 10−8, [CO2(aq)] = 9.06 × 10−4 M,
[HCO−3 ] = 1.99× 10−5 M and [CO2−

3 ] = 4.68× 10−11 M. As P (CO2) → ∞, [H+] →
(K0Ka1P (CO2))1/2 and as a result [CO2−

3 ]→ Ka2.
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Figure 5: The dependence of the pH of a sample of pure water as a function of the applied partial
pressure of carbon dioxide gas. Increasing the temperature decreases the pH at low pressures due
to the change in Kw. At high pressures, pH ∼ 1

2 logP . The circle corresponds to an atmospheric
pressure of 1 atm and the square corresponds to 1000 psi (∼ 68 atm).
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Figure 6: Fractional components of the acidic species of carbonic acid as a function of the pH of
the solution at 25oC. Circles correspond to a pressure of 1 atm (pH = 5.62) and squares correspond
to 1000 psi (∼ 68 atm) (pH = 4.70).

2.2 Solubility of calcium carbonate

In the presence of carbonate rock, the solubility depends on the amount of dissolved
inorganic carbon in the water due to the applied pressure. We include the reaction

CaCO3(s) 
 Ca2+(aq) + CO2−
3 (aq), Ksp = [Ca2+][CO2−

3 ] (8a)

where

log10Ksp = −171.9065− 0.077993T + 2839.319/T − 71.595 log10 T (8b)
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due to Mucci [19]. The charge balance expression becomes

2[Ca2+] + [H+]− 2[CO2−
3 ]− [HCO−3 ]− [OH−] = 0. (9)

and continuing as we did in the case of just carbonic acid, [H+] satisfies

[H+]3 − (K0Ka1P (CO2) +Kw)[H+]

−2K0Ka1Ka2P (CO2) =
2Ksp[H

+]4

K0Ka1Ka2P (CO2)

(10)

which should be compared to (7).
It is interesting to notice what happens to the solution of (10) as P (CO2) varies.

At 1 atm (P (CO2) = 3.85×10−4 atm) we find the equilibrium [H+] = 1.57×10−7 M
(pH = 6.80), [CO2(aq)] = 1.30× 10−5 M, [HCO−3 ] = 3.70× 10−5 M, [CO2−

3 ] = 1.11×
10−8 M, and [Ca2+] = 4.50× 10−1 M. Increasing to 1000 psi (∼ 68 atm) (P (CO2) =
2.62 × 10−2 atm), [H+] = 1.29 × 10−6 M (pH = 5.89), [CO2(aq)] = 8.86 × 10−4 M,
[HCO−3 ] = 3.06×10−4 M, [CO2−

3 ] = 1.11×10−8 M, and [Ca2+] = 4.49×10−1 M. Even
though there is nearly 68 times the dissolved carbon in solution, the equilibrium
amount of carbonate ion is virtually the same due to the buffering action of the
bicarbonate ion.

In our case, the pH is controlled in that 1 litre of 4.4 M HCl is injected into
the reaction vessel and if x moles of CaCO3 dissolves, then x moles of Ca2+ and x
moles of CO2−

3 are formed. The carbonate ions that are ejected into the solution
will be distributed amongst the different acid forms but since we know the pH,
we know that the proportion that remains as carbonate is given by α2. That is,
Ksp = [Ca2+][CO2−

3 ] = α2x
2 or alternatively the molar solubility is given by

[Ca2+] =

(
Ksp

α2([H+])

)1/2

=

(
Ksp

Ka1Ka2

)1/2 (
[H+]2 +Ka1[H+] +Ka1Ka2

)1/2
.

At 25o C, a solution of 4.4 M HCl results in a massive molar solubility of CaCO3(s)
of 6.8× 104 M.

3 Mathematical analysis

3.1 Strategy

The Study group is primarily interested in the dissolution of a carbonate rock in
a rotating disk apparatus. From Section 2 it can be seen that the dissolution rate
of CaCO3(s) depends on the availability of H+, and in a well mixed solution, the
environment of the apparatus is chosen so that Ca2+ solubility is enhanced and the
formation of CO2 gas is suppressed. Note that the generation of CO2 in the form of
bubbles rather than in an aqueous form, can change the nature of the fluid flow.

Because the flow field is generated by a spinning disk at one end of the appara-
tus, it is natural to assume that, provided the flow is laminar, it will have the form
of a von Kármán similarity solution. However, there are some significant differences
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Description Symbol Value

Depth of the top of the rotating mount L0 1.5× 10−2 m
Depth of the rock face Ld 3.0× 10−2 m
Total depth of the reaction vessel Lc 2.3× 10−1 m
Radius of the reaction vessel Rc 7.5× 10−2 m
Radius of the rock Rd 1.905× 10−2 m
Rotational speed ω 200− 1000 rpm
Density of the fluid ρ 1× 103 kg m−3

Viscosity of the fluid µ 1× 10−3 Pa s
Diffusion coefficient of Ca2+ D0 7.1× 10−10 m2 s−1

Schmidt number Sc 1.41× 103

Table 1: The physical parameters for the reaction vessel, the fluid flow and the dissolution of
Ca2+ ions.

between our situation and that of the classical von Kármán case. Namely, the spin-
ning disk does not completely cover the top of the reaction vessel and moreover, it
is submerged so there is the possibility that an additional circulation cell could form
above the disk, changing the nature of the flow. These differences are significant
enough to justify a preliminary analysis of the flow field using a CFD program. For
our purposes, we chose the package COMSOL based on its availability. Once the
fluid velocity is resolved, it can be coupled to an advection-diffusion equation to
describe the dissolving Ca2+ ions and from that, the flux of material leaving the
carbonate rock.

Figure 7 illustrates the geometry of the idealized apparatus, with the inlet/outlet
pipes omitted, so that axisymmetric flow is possible and Table 1 lists physical
values4.

Figure 7: Geometry and boundary conditions for the fluid flow within the idealized reaction
vessel.

4The value of D0 comes from [17].
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3.2 Velocity field preliminary analysis

The group considered an axisymmetric model for the flow in cylindrical coordinates
with the origin located at the disk, the positive direction towards the bottom of the
reaction vessel. The fluid flow is assumed to be incompressible and described by
the steady state Navier-Stokes equation. It is driven by the motion of the rock and
then coupled with an advection-diffusion equation for the transport of Ca2+ ions.

In detail, the fluid velocity ~u(r, z) = (ur(r, z), uθ(r, z), uz(r, z)), satisfies

ur
∂ur
∂r
− u2

θ

r
+ uz

∂ur
∂z

=
µ

ρ

(
1

r

∂

∂r

(
r
∂ur
∂r

)
− ur
r2

+
∂2ur
∂z2

)
, (11a)

ur
∂uθ
∂r

+
uθur
r

+ uz
∂uθ
∂z

=
µ

ρ

(
1

r

∂

∂r

(
r
∂uθ
∂r

)
− uθ
r2

+
∂2uθ
∂z2

)
, (11b)

ur
∂uz
∂r

+ uz
∂uz
∂z

= −1

ρ

∂P

∂z
+
µ

ρ

(
1

r

∂

∂r

(
r
∂uz
∂r

)
+
∂2uz
∂z2

)
, (11c)

where the pressure P = P (z) is assumed to depend only on the depth and with the
incompressibility condition

1

r

∂

∂r
(rur) +

∂uz
∂z

= 0. (12)

The free surface condition at z = −Ld is assumed to be stress free and all internal
surfaces are taken to have a no-slip condition

∂uz
∂z

= 0,
∂uθ
∂z

= 0, uz = 0; z = −Ld, (13a)

~u = ~0; z = Lc − Ld, (13b)

~u = ~0; r = Rc, (13c)

~u = (0, ωr, 0); z = 0,−|Ld − L0|, 0 < r < Rd, (13d)

~u = (0, ωRd, 0); r = Rd, −|Ld − L0| < z < 0. (13e)

Results for the velocity field for ω = 50, 100, 200 rad/s (477 − 1910 rpm) are
depicted in Figure 8. Note that the axis of symmetry is on the left edge of each
plot and that the aspect ratio is not preserved. The existence of the isolated vortex
near the wall suggests that sampling near the bottom may lead to fluctuations in
measured [Ca2+]. The wall opposite the rotating disk might be a better position to
sample the fluid. The structure of the flow has many of the same features of the
von Kármán similarity solution despite the fact that the disk is of finite extent and
submerged within the fluid.

The thickness of the hydrodynamic or viscous boundary layer under the disk can
be estimated by solving for the velocity of the Ekman layer. In a neighbourhood of
z = 0 this takes the form in cylindrical coordinates of ~u(z) = u0e

−λz(sinλz, cosλz, 0)
where λ2 = ρω/2µ. The thickness δ is defined as that depth where ~u(δ)/|~u(δ)| =
−~u(0)/|~u(0)| or λδ = π so that

δ = π

(
2µ

ρω

)1/2

.
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ω = 50 rad/s ω = 100 rad/s

ω = 200 rad/s ω = 200 rad/s

Figure 8: Fluid streamlines for a variety of angular rotation speeds. The figure in the bottom
right shows a close up of the fluid flow in the neighbourhood of the disk at 200 rad/s. Only the
flow field for z > 0 is presented and the aspect ratio has been modified.

Using the values in Table 1 we find a thickness of δ = 0.97 mm at 200 rpm and
δ = 0.43 mm at 1000 rpm. Figure 9 shows the change in the angular velocity of
the fluid as a function of depth. The hydrodynamic boundary layer is on the order
of 1 mm for the rotation speed and over most of the vessel the rotation of the bulk
is only 5% of the rotation speed of the disk. This of course assumes laminar flow.
Experimental measurements have shown that flow around the disk remains laminar
for Reynolds numbers on the order of Re = ωR2

dρ/µ ∼ 2× 105 in an axisymmetric
vessel [17]. This corresponds to disk rotation speeds of 551 rad/s (5261 rpm) beyond
the current upper limit.

3.3 Von Kármán similarity solutions

From the preliminary analysis, the von Kármán similarity solution seems applicable
in that (i) near disk, the velocity field is a strong function of radius whereas (ii)
far from the spinning disk, the field depended primarily on the depth z. We seek a
solution of the form

ur = rωh(ξ), uθ = rωg(ξ), uz =

(
µω

ρ

)1/2

f(ξ), P = −µωΓ(ξ) (14)
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Figure 9: Relative variation of the angular speed with depth in metres showing that the viscous
boundary layer is on the order of 1 mm for the rotation speeds of interest. In most of the reaction
vessel the speed is only 5% of the rotation speed of the rotating disk.

where ξ = (ρω/µ)1/2z is nondimensional and of order one within the viscous bound-
ary layer. Substituting (14) into (11) gives the coupled system

h2 − g2 + h′f = h′′, (15a)

2hg + g′f = g′′, (15b)

ff ′ = Γ′ + f ′′ (15c)

and the incompressibility condition reducing to 2h+f ′ = 0. Using this last relation
to eliminate h gives the system

f ′′′ = −1

2
f ′2 + 2g2 + f ′′f, (16a)

g′′ = −f ′g + g′f, (16b)

Γ′ = ff ′ − f ′′. (16c)

At ξ = 0, the no-slip condition (13d) gives f = 0, g = 1 and h = 0. In addition,
f ′(0) = 0, g′(0) = b, h′(0) = −f ′′(0)/2 = a chosen so that as ξ →∞, h→ 0, g → 0
and f → −f∞ corresponding to an upwelling velocity moving towards the disk far
outside the boundary layer.

From Levitch [4] and our own numerical simulations, b = −0.6159286, a =
0.5102159 resulting in f∞ ' 0.88447 or uz → −0.88447(µω/ρ)1/2. The components
of the similarity solution are shown in Figure 10. Having a solution for the velocity
in a neighbourhood of the disk we can use this flow field to solve an advection-
diffusion equation for the dissolving calcium ions.
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Figure 10: Components of the von Kármán similarity solution as a function of the nondimensional
coordinate ξ.

4 Reaction Rate

4.1 Concentration in the diffusive boundary layer

At this point we turn our attention to the advection-diffusion process. We assume
that we have a steady process and that there is essentially no variation in concen-
tration radially compared to the axial variation. This results in the expression

uz
∂c

∂z
= D0

∂2c

∂z2
.

Together with this, we assume that limz→∞ c(z) = cb, the concentration in the bulk,
and at the surface of the rock we specify a flux corresponding to a reaction of order
n so that

D0
∂c

∂z

∣∣∣∣
z=0

= kcn0 (17)

denoting c0 = c(0). Using the velocity from the von Kármán solution and scal-
ing the z coordinate with the thickness of the hydrodynamic boundary layer, ξ =
(ρω/µ)1/2z, gives the expression

f(ξ)
∂c

∂ξ
=

1

Sc

∂2c

∂ξ2
, (18)

where Sc = µ/D0ρ ∼ 1.41 × 103 � 1 so there is a boundary layer with thickness
Sc−1/3 ∼ 0.089 in these scaled coordinates. That is, roughly one-tenth the thickness
of the viscous boundary layer.
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Solving (18) and applying the boundary condition as ξ →∞ gives

c(ξ) = c0 + (cb − c0)

∫ ξ

0

e
∫ t Sc f(s) dsdt∫ ∞

0

e
∫ t Sc f(s) dsdt

(19)

with c0 chosen to satisfy the flux condition (17) at the surface.

4.2 Finding the reaction rate

Having determined the concentration, the rate at which material leaves the rock is
the integrated flux over the dissolving surface. Since we have assumed no radial
dependence, one has

πR2
dR =

∫∫
disk

D0
∂c

∂z

∣∣∣∣
z=0

dA = πkR2
dc
n
0 (20a)

with

cn0

∫ ∞
0

e
∫ t Sc f(s) dsdt =

D0

k

(
ρω

µ

)1/2

(cb − c0). (20b)

Traditionally one estimates the integral by replacing f(ξ) with the first term of its
Taylor series [4], f(ξ) ∼ −aξ2 +O(ξ3) and finds

I∞(Sc) =

∫ ∞
0

e
∫ t Sc f(s) dsdt ∼

(
a Sc

3

)−1/3∫ ∞
0

e−t
3

dt =

(
a Sc

3

)−1/3

Γ

(
4

3

)
. (21)

Alternatively, if one is already solving the system (15) then

I∞(Sc) = lim
x→∞

I(x; Sc)

where I(x; Sc) satisfies I ′′ = Sc f(x)I ′; I(0) = 0, I ′(0) = 1. Using this technique we
find

I∞(Sc) ' ASc−γ (22)

where A = 2.08938, γ = 0.35469. A comparison of these estimates is shown in
Figure 11.

At this point one could solve R as a function of n numerically. Specializing to
the case of n = 1, equation (20b) gives the approximation

c0 = cb

((
a1/3

31/3Γ(4/3)

)−1

kD
−2/3
0

(
µ

ρ

)1/6

ω−1/2 + 1

)−1

leading to the asymptotic expression with respect to ω of

R = cb

 a1/3

31/3Γ(4/3)
D

2/3
0

(
µ
ρ

)−1/6

ω1/2, ω → 0,

k, ω →∞.
(23)
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Figure 11: Comparison of the various estimates of I∞(Sc). The circles are the actual data points,
the solid line is the estimate (22) and the dashed line is the traditional estimate (21).

If expression (22) is used instead then one has

R = cb

A−1D1−γ
0

(
µ
ρ

)γ−1/2

ω1/2, ω → 0,

k, ω →∞.
(24)

Returning to the traditional estimate, noting that a1/3

31/3Γ(4/3)
= 0.62044, we see

that we have reproduced the original expression (1) given back in Section 1. Also
of interest is the case when c0 � cb. In this regime,

R = kcn0 ∼
a1/3

31/3Γ(4/3)
D

2/3
0

(
µ

ρ

)−1/6

ω1/2cb

for any order n in contradiction to the expression suggested by Schlumberger.

4.3 A Stefan problem for the Ca+ dissolution

A simple Stefan problem has been proposed to predict the rate at which calcium
carbonate is being dissolved and hopefully to explain the swirling patterns we ob-
served. In this first iteration we ignore the velocity field and assume only diffusion
in the bulk. A one dimensional model was taken and assumes that the rock extends
from z = 0 to z = S(t) with S(0) = S0 being the initial thickness. The solid
has some intrinsic concentration which decreases as it is dissolved into the solution
and the rate at which this material is lost is taken up in motion of the dissolving
interface. The speed of the interface is related to the jump in concentration at the
surface. As mentioned, in the bulk of vessel S(t) < z < L, the concentration sat-
isfies the diffusion equation (ignoring advection) and a no flux boundary condition
is specified at the bottom of the vessel at z = L.
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Putting all these assumptions together gives the model

c(z, t) = cs; 0 ≤ z < S(t), t ∈ (0, T ]

∂c

∂t
= D

∂2c

∂z2
; S(t) < z < L, t ∈ (0, T ]

∂c

∂z
= 0; z = L, t ∈ (0, T ];

c(z, t) = c0; z = S(t), t ∈ (0, T ]

(cs − c0)
dS

dt
= D

∂c

∂z
; z = S(t), t ∈ (0, T ], S(0) = S0

where cs is the concentration of the solid rock and initially we assume some bulk
concentration in the solution c(z, 0) = cb for S0 < z < L. T is defined as that time
where S(T ) = 0 and all the material has dissolved. To validate this model it should
predict the observed dissolution rate of dS/dt ∼ 3/5 mm per minute (10−5 m s−1).

5 Summary

The flow within the experimental apparatus was modelled and it was found that
the Reynolds number varies significantly from the bulk to the layer near the edge
of the rotating disk with values from 1000-5000 but the onset of turbulence is
not expected until a rotation speed of roughly 5200 rpm. Using COMSOL, the
flow was shown to be axisymmetric but in reality it may be more complicated
with time dependent behaviour in the corners of the reaction vessel and near the
disk. This behaviour will modify the transport of the Ca2+ ions which suggests
that a better place to sample the concentration would be away from the
bottom of the reaction vessel near the side wall opposite the rotating
disk. One concern is the edge of the disk which was assumed to erode in the
modelling described herein. By having material on the edge which does not erode,
there is the possibility that a high concentration of ions could be trapped near the
surface of the disk, artificially slowing its dissolution. It was proposed that using a
material that dissolved might lead to an improvement in the results. The literature
on the kinetics of the dissolution of carbonate could be coupled into the model to
produce profiles of the concentration of the various chemical species. Details of this
nature have so far ignored the advection of the fluid. Another avenue of interest
might be to include the porosity of the rock in the Stefan model that was proposed.
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