Ambrose, David and Braun, Richard and DeBisschop, Cynthia and Gremaud, Pierre and Howell, Peter and Kramer, Peter and Please, Colin and Salazar Gonzalez, Jose Domingo and Schwendeman, Donald (2002) Boundary Layers and Material Deformation in Fiber Drawing. [Study Group Report]
|
PDF
255kB |
Abstract
We study two fluid dynamical issues which are important in the manufacture of thin glass fibers for communication networks and materials. Such thin fibers are obtained by rapidly pulling molten glass through an array of successively smaller holes.
Through asymptotic analysis and physical modeling, we obtain a quantitative description of the flow and structure of the glass fiber as it is being pulled. We examine in particular the issue of whether initially planar cross sections remain planar, and find that they do so approximately, but not exactly, even in the absence of such factors as gravity, surface tension, and inertia. We also develop a quantitative theory for the structure of the air flow near the fiber, which is an important ingredient in determining how fast the fiber cools. In particular, we develop a description for the structure of the boundary layer near a fiber which has accelerating surface velocity and shrinking radius which is comparable or thin compared with the thickness of the boundary layer. One novel feature is that the acceleration of the fiber surface velocity leads to a compression of the boundary layer as it evolves downstream.
Item Type: | Study Group Report |
---|---|
Problem Sectors: | Materials |
Study Groups: | US Workshop on Mathematical Problems in Industry > 17th MPI [Rensselaer 4/6/2001 - 8/6/2001] |
Company Name: | Corning Incorporated |
ID Code: | 252 |
Deposited By: | Dr Kamel Bentahar |
Deposited On: | 21 Oct 2009 15:55 |
Last Modified: | 29 May 2015 19:51 |
Repository Staff Only: item control page